2024/11/14 - Amazon SageMaker Service - 17 updated api methods
Changes Add support for Neuron instance types [ trn1/trn1n/inf2 ] on SageMaker Notebook Instances Platform.
{'ModelPackageSummaries': {'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}
This action batch describes a list of versioned model packages
See also: AWS API Documentation
Request Syntax
client.batch_describe_model_package( ModelPackageArnList=[ 'string', ] )
list
[REQUIRED]
The list of Amazon Resource Name (ARN) of the model package groups.
(string) --
dict
Response Syntax
{ 'ModelPackageSummaries': { 'string': { 'ModelPackageGroupName': 'string', 'ModelPackageVersion': 123, 'ModelPackageArn': 'string', 'ModelPackageDescription': 'string', 'CreationTime': datetime(2015, 1, 1), 'InferenceSpecification': { 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, 'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting', 'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval' } }, 'BatchDescribeModelPackageErrorMap': { 'string': { 'ErrorCode': 'string', 'ErrorResponse': 'string' } } }
Response Structure
(dict) --
ModelPackageSummaries (dict) --
The summaries for the model package versions
(string) --
(dict) --
Provides summary information about the model package.
ModelPackageGroupName (string) --
The group name for the model package
ModelPackageVersion (integer) --
The version number of a versioned model.
ModelPackageArn (string) --
The Amazon Resource Name (ARN) of the model package.
ModelPackageDescription (string) --
The description of the model package.
CreationTime (datetime) --
The creation time of the mortgage package summary.
InferenceSpecification (dict) --
Defines how to perform inference generation after a training job is run.
Containers (list) --
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) --
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) --
Specifies the S3 path of ML model data to deploy.
S3DataType (string) --
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) --
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) --
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) --
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) --
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) --
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) --
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
ModelPackageStatus (string) --
The status of the mortgage package.
ModelApprovalStatus (string) --
The approval status of the model.
BatchDescribeModelPackageErrorMap (dict) --
A map of the resource and BatchDescribeModelPackageError objects reporting the error associated with describing the model package.
(string) --
(dict) --
The error code and error description associated with the resource.
ErrorCode (string) --
ErrorResponse (string) --
{'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'ValidationSpecification': {'ValidationProfiles': {'TransformJobDefinition': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}}}
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
See also: AWS API Documentation
Request Syntax
client.create_algorithm( AlgorithmName='string', AlgorithmDescription='string', TrainingSpecification={ 'TrainingImage': 'string', 'TrainingImageDigest': 'string', 'SupportedHyperParameters': [ { 'Name': 'string', 'Description': 'string', 'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText', 'Range': { 'IntegerParameterRangeSpecification': { 'MinValue': 'string', 'MaxValue': 'string' }, 'ContinuousParameterRangeSpecification': { 'MinValue': 'string', 'MaxValue': 'string' }, 'CategoricalParameterRangeSpecification': { 'Values': [ 'string', ] } }, 'IsTunable': True|False, 'IsRequired': True|False, 'DefaultValue': 'string' }, ], 'SupportedTrainingInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.p5e.48xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.16xlarge'|'ml.g6.12xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.g6e.xlarge'|'ml.g6e.2xlarge'|'ml.g6e.4xlarge'|'ml.g6e.8xlarge'|'ml.g6e.16xlarge'|'ml.g6e.12xlarge'|'ml.g6e.24xlarge'|'ml.g6e.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.8xlarge'|'ml.c6i.4xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.8xlarge'|'ml.r5d.12xlarge'|'ml.r5d.16xlarge'|'ml.r5d.24xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', ], 'SupportsDistributedTraining': True|False, 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'TrainingChannels': [ { 'Name': 'string', 'Description': 'string', 'IsRequired': True|False, 'SupportedContentTypes': [ 'string', ], 'SupportedCompressionTypes': [ 'None'|'Gzip', ], 'SupportedInputModes': [ 'Pipe'|'File'|'FastFile', ] }, ], 'SupportedTuningJobObjectiveMetrics': [ { 'Type': 'Maximize'|'Minimize', 'MetricName': 'string' }, ], 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, InferenceSpecification={ 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, ValidationSpecification={ 'ValidationRole': 'string', 'ValidationProfiles': [ { 'ProfileName': 'string', 'TrainingJobDefinition': { 'TrainingInputMode': 'Pipe'|'File'|'FastFile', 'HyperParameters': { 'string': 'string' }, 'InputDataConfig': [ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ], 'InstanceGroupNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File'|'FastFile', 'ShuffleConfig': { 'Seed': 123 } }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'CompressionType': 'GZIP'|'NONE' }, 'ResourceConfig': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.p5e.48xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.16xlarge'|'ml.g6.12xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.g6e.xlarge'|'ml.g6e.2xlarge'|'ml.g6e.4xlarge'|'ml.g6e.8xlarge'|'ml.g6e.16xlarge'|'ml.g6e.12xlarge'|'ml.g6e.24xlarge'|'ml.g6e.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.8xlarge'|'ml.c6i.4xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.8xlarge'|'ml.r5d.12xlarge'|'ml.r5d.16xlarge'|'ml.r5d.24xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string', 'KeepAlivePeriodInSeconds': 123, 'InstanceGroups': [ { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.p5e.48xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.16xlarge'|'ml.g6.12xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.g6e.xlarge'|'ml.g6e.2xlarge'|'ml.g6e.4xlarge'|'ml.g6e.8xlarge'|'ml.g6e.16xlarge'|'ml.g6e.12xlarge'|'ml.g6e.24xlarge'|'ml.g6e.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.8xlarge'|'ml.c6i.4xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.8xlarge'|'ml.r5d.12xlarge'|'ml.r5d.16xlarge'|'ml.r5d.24xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'InstanceCount': 123, 'InstanceGroupName': 'string' }, ] }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123, 'MaxPendingTimeInSeconds': 123 } }, 'TransformJobDefinition': { 'MaxConcurrentTransforms': 123, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' } } }, ] }, CertifyForMarketplace=True|False, Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name of the algorithm.
string
A description of the algorithm.
dict
[REQUIRED]
Specifies details about training jobs run by this algorithm, including the following:
The Amazon ECR path of the container and the version digest of the algorithm.
The hyperparameters that the algorithm supports.
The instance types that the algorithm supports for training.
Whether the algorithm supports distributed training.
The metrics that the algorithm emits to Amazon CloudWatch.
Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.
TrainingImage (string) -- [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the training algorithm.
TrainingImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
SupportedHyperParameters (list) --
A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
(dict) --
Defines a hyperparameter to be used by an algorithm.
Name (string) -- [REQUIRED]
The name of this hyperparameter. The name must be unique.
Description (string) --
A brief description of the hyperparameter.
Type (string) -- [REQUIRED]
The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.
Range (dict) --
The allowed range for this hyperparameter.
IntegerParameterRangeSpecification (dict) --
A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.
MinValue (string) -- [REQUIRED]
The minimum integer value allowed.
MaxValue (string) -- [REQUIRED]
The maximum integer value allowed.
ContinuousParameterRangeSpecification (dict) --
A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.
MinValue (string) -- [REQUIRED]
The minimum floating-point value allowed.
MaxValue (string) -- [REQUIRED]
The maximum floating-point value allowed.
CategoricalParameterRangeSpecification (dict) --
A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.
Values (list) -- [REQUIRED]
The allowed categories for the hyperparameter.
(string) --
IsTunable (boolean) --
Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
IsRequired (boolean) --
Indicates whether this hyperparameter is required.
DefaultValue (string) --
The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
SupportedTrainingInstanceTypes (list) -- [REQUIRED]
A list of the instance types that this algorithm can use for training.
(string) --
SupportsDistributedTraining (boolean) --
Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
MetricDefinitions (list) --
A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.
(dict) --
Specifies a metric that the training algorithm writes to stderr or stdout. You can view these logs to understand how your training job performs and check for any errors encountered during training. SageMaker hyperparameter tuning captures all defined metrics. Specify one of the defined metrics to use as an objective metric using the TuningObjective parameter in the HyperParameterTrainingJobDefinition API to evaluate job performance during hyperparameter tuning.
Name (string) -- [REQUIRED]
The name of the metric.
Regex (string) -- [REQUIRED]
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.
TrainingChannels (list) -- [REQUIRED]
A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.
(dict) --
Defines a named input source, called a channel, to be used by an algorithm.
Name (string) -- [REQUIRED]
The name of the channel.
Description (string) --
A brief description of the channel.
IsRequired (boolean) --
Indicates whether the channel is required by the algorithm.
SupportedContentTypes (list) -- [REQUIRED]
The supported MIME types for the data.
(string) --
SupportedCompressionTypes (list) --
The allowed compression types, if data compression is used.
(string) --
SupportedInputModes (list) -- [REQUIRED]
The allowed input mode, either FILE or PIPE.
In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.
In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
(string) --
The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
SupportedTuningJobObjectiveMetrics (list) --
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
(dict) --
Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.
Type (string) -- [REQUIRED]
Whether to minimize or maximize the objective metric.
MetricName (string) -- [REQUIRED]
The name of the metric to use for the objective metric.
AdditionalS3DataSource (dict) --
The additional data source used during the training job.
S3DataType (string) -- [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) -- [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
dict
Specifies details about inference jobs that the algorithm runs, including the following:
The Amazon ECR paths of containers that contain the inference code and model artifacts.
The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
The input and output content formats that the algorithm supports for inference.
Containers (list) -- [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) -- [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) -- [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) -- [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) -- [REQUIRED]
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) -- [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) -- [REQUIRED]
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) -- [REQUIRED]
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) -- [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) -- [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
dict
Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.
ValidationRole (string) -- [REQUIRED]
The IAM roles that SageMaker uses to run the training jobs.
ValidationProfiles (list) -- [REQUIRED]
An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.
(dict) --
Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.
The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.
ProfileName (string) -- [REQUIRED]
The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
TrainingJobDefinition (dict) -- [REQUIRED]
The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.
TrainingInputMode (string) -- [REQUIRED]
The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
HyperParameters (dict) --
The hyperparameters used for the training job.
(string) --
(string) --
InputDataConfig (list) -- [REQUIRED]
An array of Channel objects, each of which specifies an input source.
(dict) --
A channel is a named input source that training algorithms can consume.
ChannelName (string) -- [REQUIRED]
The name of the channel.
DataSource (dict) -- [REQUIRED]
The location of the channel data.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.
If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/
A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
Your input bucket must be located in same Amazon Web Services region as your training job.
S3DataDistributionType (string) --
If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated.
If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.
AttributeNames (list) --
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string) --
InstanceGroupNames (list) --
A list of names of instance groups that get data from the S3 data source.
(string) --
FileSystemDataSource (dict) --
The file system that is associated with a channel.
FileSystemId (string) -- [REQUIRED]
The file system id.
FileSystemAccessMode (string) -- [REQUIRED]
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
FileSystemType (string) -- [REQUIRED]
The file system type.
DirectoryPath (string) -- [REQUIRED]
The full path to the directory to associate with the channel.
ContentType (string) --
The MIME type of the data.
CompressionType (string) --
If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
RecordWrapperType (string) --
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
InputMode (string) --
(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.
To use a model for incremental training, choose File input model.
ShuffleConfig (dict) --
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.
For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
Seed (integer) -- [REQUIRED]
Determines the shuffling order in ShuffleConfig value.
OutputDataConfig (dict) -- [REQUIRED]
the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. If the output data is stored in Amazon S3 Express One Zone, it is encrypted with server-side encryption with Amazon S3 managed keys (SSE-S3). KMS key is not supported for Amazon S3 Express One Zone
The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
S3OutputPath (string) -- [REQUIRED]
Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
CompressionType (string) --
The model output compression type. Select None to output an uncompressed model, recommended for large model outputs. Defaults to gzip.
ResourceConfig (dict) -- [REQUIRED]
The resources, including the ML compute instances and ML storage volumes, to use for model training.
InstanceType (string) --
The ML compute instance type.
InstanceCount (integer) --
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB (integer) -- [REQUIRED]
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.
When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d, ml.g4dn, and ml.g5.
When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2.
To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId (string) --
The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
The VolumeKmsKeyId can be in any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
KeepAlivePeriodInSeconds (integer) --
The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
InstanceGroups (list) --
The configuration of a heterogeneous cluster in JSON format.
(dict) --
Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .
InstanceType (string) -- [REQUIRED]
Specifies the instance type of the instance group.
InstanceCount (integer) -- [REQUIRED]
Specifies the number of instances of the instance group.
InstanceGroupName (string) -- [REQUIRED]
Specifies the name of the instance group.
StoppingCondition (dict) -- [REQUIRED]
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
MaxRuntimeInSeconds (integer) --
The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.
For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.
The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.
MaxWaitTimeInSeconds (integer) --
The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds. If the job does not complete during this time, SageMaker ends the job.
When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.
MaxPendingTimeInSeconds (integer) --
The maximum length of time, in seconds, that a training or compilation job can be pending before it is stopped.
TransformJobDefinition (dict) --
The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.
MaxConcurrentTransforms (integer) --
The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
MaxPayloadInMB (integer) --
The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
BatchStrategy (string) --
A string that determines the number of records included in a single mini-batch.
SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
Environment (dict) --
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
TransformInput (dict) -- [REQUIRED]
A description of the input source and the way the transform job consumes it.
DataSource (dict) -- [REQUIRED]
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) -- [REQUIRED]
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile, S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/.
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.
TransformOutput (dict) -- [REQUIRED]
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
TransformResources (dict) -- [REQUIRED]
Identifies the ML compute instances for the transform job.
InstanceType (string) -- [REQUIRED]
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ``ml.m5.large``instance types.
InstanceCount (integer) -- [REQUIRED]
The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
boolean
Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
list
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'AlgorithmArn': 'string' }
Response Structure
(dict) --
AlgorithmArn (string) --
The Amazon Resource Name (ARN) of the new algorithm.
{'ModelVariants': {'InfrastructureConfig': {'RealTimeInferenceConfig': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}}}}
Creates an inference experiment using the configurations specified in the request.
Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.
Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.
While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
See also: AWS API Documentation
Request Syntax
client.create_inference_experiment( Name='string', Type='ShadowMode', Schedule={ 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, Description='string', RoleArn='string', EndpointName='string', ModelVariants=[ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', 'InstanceCount': 123 } } }, ], DataStorageConfig={ 'Destination': 'string', 'KmsKey': 'string', 'ContentType': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, ShadowModeConfig={ 'SourceModelVariantName': 'string', 'ShadowModelVariants': [ { 'ShadowModelVariantName': 'string', 'SamplingPercentage': 123 }, ] }, KmsKey='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name for the inference experiment.
string
[REQUIRED]
The type of the inference experiment that you want to run. The following types of experiments are possible:
ShadowMode: You can use this type to validate a shadow variant. For more information, see Shadow tests.
dict
The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
string
A description for the inference experiment.
string
[REQUIRED]
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
string
[REQUIRED]
The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.
list
[REQUIRED]
An array of ModelVariantConfig objects. There is one for each variant in the inference experiment. Each ModelVariantConfig object in the array describes the infrastructure configuration for the corresponding variant.
(dict) --
Contains information about the deployment options of a model.
ModelName (string) -- [REQUIRED]
The name of the Amazon SageMaker Model entity.
VariantName (string) -- [REQUIRED]
The name of the variant.
InfrastructureConfig (dict) -- [REQUIRED]
The configuration for the infrastructure that the model will be deployed to.
InfrastructureType (string) -- [REQUIRED]
The inference option to which to deploy your model. Possible values are the following:
RealTime: Deploy to real-time inference.
RealTimeInferenceConfig (dict) -- [REQUIRED]
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) -- [REQUIRED]
The instance type the model is deployed to.
InstanceCount (integer) -- [REQUIRED]
The number of instances of the type specified by InstanceType.
dict
The Amazon S3 location and configuration for storing inference request and response data.
This is an optional parameter that you can use for data capture. For more information, see Capture data.
Destination (string) -- [REQUIRED]
The Amazon S3 bucket where the inference request and response data is stored.
KmsKey (string) --
The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.
ContentType (dict) --
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
dict
[REQUIRED]
The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
SourceModelVariantName (string) -- [REQUIRED]
The name of the production variant, which takes all the inference requests.
ShadowModelVariants (list) -- [REQUIRED]
List of shadow variant configurations.
(dict) --
The name and sampling percentage of a shadow variant.
ShadowModelVariantName (string) -- [REQUIRED]
The name of the shadow variant.
SamplingPercentage (integer) -- [REQUIRED]
The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.
string
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKey can be any of the following formats:
KMS key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
Amazon Resource Name (ARN) of a KMS key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
KMS key Alias "alias/ExampleAlias"
Amazon Resource Name (ARN) of a KMS key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
list
Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN for your inference experiment.
{'AdditionalInferenceSpecifications': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'ValidationSpecification': {'ValidationProfiles': {'TransformJobDefinition': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}}}
Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.
To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for SourceAlgorithmSpecification.
See also: AWS API Documentation
Request Syntax
client.create_model_package( ModelPackageName='string', ModelPackageGroupName='string', ModelPackageDescription='string', InferenceSpecification={ 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, ValidationSpecification={ 'ValidationRole': 'string', 'ValidationProfiles': [ { 'ProfileName': 'string', 'TransformJobDefinition': { 'MaxConcurrentTransforms': 123, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' } } }, ] }, SourceAlgorithmSpecification={ 'SourceAlgorithms': [ { 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'AlgorithmName': 'string' }, ] }, CertifyForMarketplace=True|False, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval', MetadataProperties={ 'CommitId': 'string', 'Repository': 'string', 'GeneratedBy': 'string', 'ProjectId': 'string' }, ModelMetrics={ 'ModelQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelDataQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Bias': { 'Report': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PreTrainingReport': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PostTrainingReport': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Explainability': { 'Report': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } } }, ClientToken='string', Domain='string', Task='string', SamplePayloadUrl='string', CustomerMetadataProperties={ 'string': 'string' }, DriftCheckBaselines={ 'Bias': { 'ConfigFile': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PreTrainingConstraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PostTrainingConstraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Explainability': { 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'ConfigFile': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelDataQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } } }, AdditionalInferenceSpecifications=[ { 'Name': 'string', 'Description': 'string', 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, ], SkipModelValidation='All'|'None', SourceUri='string', SecurityConfig={ 'KmsKeyId': 'string' }, ModelCard={ 'ModelCardContent': 'string', 'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived' }, ModelLifeCycle={ 'Stage': 'string', 'StageStatus': 'string', 'StageDescription': 'string' } )
string
The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
This parameter is required for unversioned models. It is not applicable to versioned models.
string
The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.
This parameter is required for versioned models, and does not apply to unversioned models.
string
A description of the model package.
dict
Specifies details about inference jobs that you can run with models based on this model package, including the following information:
The Amazon ECR paths of containers that contain the inference code and model artifacts.
The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
The input and output content formats that the model package supports for inference.
Containers (list) -- [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) -- [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) -- [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) -- [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) -- [REQUIRED]
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) -- [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) -- [REQUIRED]
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) -- [REQUIRED]
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) -- [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) -- [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
dict
Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.
ValidationRole (string) -- [REQUIRED]
The IAM roles to be used for the validation of the model package.
ValidationProfiles (list) -- [REQUIRED]
An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.
(dict) --
Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.
The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.
ProfileName (string) -- [REQUIRED]
The name of the profile for the model package.
TransformJobDefinition (dict) -- [REQUIRED]
The TransformJobDefinition object that describes the transform job used for the validation of the model package.
MaxConcurrentTransforms (integer) --
The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
MaxPayloadInMB (integer) --
The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
BatchStrategy (string) --
A string that determines the number of records included in a single mini-batch.
SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
Environment (dict) --
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
TransformInput (dict) -- [REQUIRED]
A description of the input source and the way the transform job consumes it.
DataSource (dict) -- [REQUIRED]
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) -- [REQUIRED]
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile, S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/.
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.
TransformOutput (dict) -- [REQUIRED]
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
TransformResources (dict) -- [REQUIRED]
Identifies the ML compute instances for the transform job.
InstanceType (string) -- [REQUIRED]
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ``ml.m5.large``instance types.
InstanceCount (integer) -- [REQUIRED]
The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
dict
Details about the algorithm that was used to create the model package.
SourceAlgorithms (list) -- [REQUIRED]
A list of the algorithms that were used to create a model package.
(dict) --
Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) -- [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) -- [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) -- [REQUIRED]
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) -- [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) -- [REQUIRED]
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
AlgorithmName (string) -- [REQUIRED]
The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
boolean
Whether to certify the model package for listing on Amazon Web Services Marketplace.
This parameter is optional for unversioned models, and does not apply to versioned models.
list
A list of key value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
If you supply ModelPackageGroupName, your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply a tag argument.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
string
Whether the model is approved for deployment.
This parameter is optional for versioned models, and does not apply to unversioned models.
For versioned models, the value of this parameter must be set to Approved to deploy the model.
dict
Metadata properties of the tracking entity, trial, or trial component.
CommitId (string) --
The commit ID.
Repository (string) --
The repository.
GeneratedBy (string) --
The entity this entity was generated by.
ProjectId (string) --
The project ID.
dict
A structure that contains model metrics reports.
ModelQuality (dict) --
Metrics that measure the quality of a model.
Statistics (dict) --
Model quality statistics.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Constraints (dict) --
Model quality constraints.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
ModelDataQuality (dict) --
Metrics that measure the quality of the input data for a model.
Statistics (dict) --
Data quality statistics for a model.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Constraints (dict) --
Data quality constraints for a model.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Bias (dict) --
Metrics that measure bias in a model.
Report (dict) --
The bias report for a model
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
PreTrainingReport (dict) --
The pre-training bias report for a model.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
PostTrainingReport (dict) --
The post-training bias report for a model.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Explainability (dict) --
Metrics that help explain a model.
Report (dict) --
The explainability report for a model.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
string
A unique token that guarantees that the call to this API is idempotent.
This field is autopopulated if not provided.
string
The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.
string
The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: "IMAGE_CLASSIFICATION" | "OBJECT_DETECTION" | "TEXT_GENERATION" | "IMAGE_SEGMENTATION" | "FILL_MASK" | "CLASSIFICATION" | "REGRESSION" | "OTHER".
Specify "OTHER" if none of the tasks listed fit your use case.
string
The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the InvokeEndpoint call.
dict
The metadata properties associated with the model package versions.
(string) --
(string) --
dict
Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
Bias (dict) --
Represents the drift check bias baselines that can be used when the model monitor is set using the model package.
ConfigFile (dict) --
The bias config file for a model.
ContentType (string) --
The type of content stored in the file source.
ContentDigest (string) --
The digest of the file source.
S3Uri (string) -- [REQUIRED]
The Amazon S3 URI for the file source.
PreTrainingConstraints (dict) --
The pre-training constraints.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
PostTrainingConstraints (dict) --
The post-training constraints.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Explainability (dict) --
Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.
Constraints (dict) --
The drift check explainability constraints.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
ConfigFile (dict) --
The explainability config file for the model.
ContentType (string) --
The type of content stored in the file source.
ContentDigest (string) --
The digest of the file source.
S3Uri (string) -- [REQUIRED]
The Amazon S3 URI for the file source.
ModelQuality (dict) --
Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.
Statistics (dict) --
The drift check model quality statistics.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Constraints (dict) --
The drift check model quality constraints.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
ModelDataQuality (dict) --
Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.
Statistics (dict) --
The drift check model data quality statistics.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
Constraints (dict) --
The drift check model data quality constraints.
ContentType (string) -- [REQUIRED]
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) -- [REQUIRED]
The S3 URI for the metrics source.
list
An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
(dict) --
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
Name (string) -- [REQUIRED]
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.
Description (string) --
A description of the additional Inference specification
Containers (list) -- [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) -- [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) -- [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) -- [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) -- [REQUIRED]
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) -- [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) -- [REQUIRED]
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) -- [REQUIRED]
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) -- [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) -- [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
string
Indicates if you want to skip model validation.
string
The URI of the source for the model package. If you want to clone a model package, set it to the model package Amazon Resource Name (ARN). If you want to register a model, set it to the model ARN.
dict
The KMS Key ID ( KMSKeyId) used for encryption of model package information.
KmsKeyId (string) -- [REQUIRED]
The KMS Key ID ( KMSKeyId) used for encryption of model package information.
dict
The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.
ModelCardContent (string) --
The content of the model card. The content must follow the schema described in Model Package Model Card Schema.
ModelCardStatus (string) --
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft: The model card is a work in progress.
PendingReview: The model card is pending review.
Approved: The model card is approved.
Archived: The model card is archived. No more updates can be made to the model card content. If you try to update the model card content, you will receive the message Model Card is in Archived state.
dict
A structure describing the current state of the model in its life cycle.
Stage (string) -- [REQUIRED]
The current stage in the model life cycle.
StageStatus (string) -- [REQUIRED]
The current status of a stage in model life cycle.
StageDescription (string) --
Describes the stage related details.
dict
Response Syntax
{ 'ModelPackageArn': 'string' }
Response Structure
(dict) --
ModelPackageArn (string) --
The Amazon Resource Name (ARN) of the new model package.
{'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}
Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.
In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.
SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use SageMaker with a specific algorithm or with a machine learning framework.
After receiving the request, SageMaker does the following:
Creates a network interface in the SageMaker VPC.
(Option) If you specified SubnetId, SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.
Launches an EC2 instance of the type specified in the request in the SageMaker VPC. If you specified SubnetId of your VPC, SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.
After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.
After SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating SageMaker endpoints, and validate hosted models.
For more information, see How It Works.
See also: AWS API Documentation
Request Syntax
client.create_notebook_instance( NotebookInstanceName='string', InstanceType='ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', SubnetId='string', SecurityGroupIds=[ 'string', ], RoleArn='string', KmsKeyId='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], LifecycleConfigName='string', DirectInternetAccess='Enabled'|'Disabled', VolumeSizeInGB=123, AcceleratorTypes=[ 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', ], DefaultCodeRepository='string', AdditionalCodeRepositories=[ 'string', ], RootAccess='Enabled'|'Disabled', PlatformIdentifier='string', InstanceMetadataServiceConfiguration={ 'MinimumInstanceMetadataServiceVersion': 'string' } )
string
[REQUIRED]
The name of the new notebook instance.
string
[REQUIRED]
The type of ML compute instance to launch for the notebook instance.
string
The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
list
The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
(string) --
string
[REQUIRED]
When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker can perform these tasks. The policy must allow the SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker Roles.
string
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
list
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
string
The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
string
Sets whether SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to SageMaker training and endpoint services unless you configure a NAT Gateway in your VPC.
For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
integer
The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
list
This parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of EI instance types to associate with this notebook instance.
(string) --
string
A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
list
An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
(string) --
string
Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.
string
The platform identifier of the notebook instance runtime environment.
dict
Information on the IMDS configuration of the notebook instance
MinimumInstanceMetadataServiceVersion (string) -- [REQUIRED]
Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance, if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance, there is no default.
dict
Response Syntax
{ 'NotebookInstanceArn': 'string' }
Response Structure
(dict) --
NotebookInstanceArn (string) --
The Amazon Resource Name (ARN) of the notebook instance.
{'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}
Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.
To perform batch transformations, you create a transform job and use the data that you have readily available.
In the request body, you provide the following:
TransformJobName - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see CreateModel.
TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.
TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
TransformResources - Identifies the ML compute instances for the transform job.
For more information about how batch transformation works, see Batch Transform.
See also: AWS API Documentation
Request Syntax
client.create_transform_job( TransformJobName='string', ModelName='string', MaxConcurrentTransforms=123, ModelClientConfig={ 'InvocationsTimeoutInSeconds': 123, 'InvocationsMaxRetries': 123 }, MaxPayloadInMB=123, BatchStrategy='MultiRecord'|'SingleRecord', Environment={ 'string': 'string' }, TransformInput={ 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, TransformOutput={ 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, DataCaptureConfig={ 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'GenerateInferenceId': True|False }, TransformResources={ 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' }, DataProcessing={ 'InputFilter': 'string', 'OutputFilter': 'string', 'JoinSource': 'Input'|'None' }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], ExperimentConfig={ 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' } )
string
[REQUIRED]
The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
string
[REQUIRED]
The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.
integer
The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
dict
Configures the timeout and maximum number of retries for processing a transform job invocation.
InvocationsTimeoutInSeconds (integer) --
The timeout value in seconds for an invocation request. The default value is 600.
InvocationsMaxRetries (integer) --
The maximum number of retries when invocation requests are failing. The default value is 3.
integer
The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.
The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.
For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.
string
Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord.
To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line.
To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.
dict
The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.
(string) --
(string) --
dict
[REQUIRED]
Describes the input source and the way the transform job consumes it.
DataSource (dict) -- [REQUIRED]
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) -- [REQUIRED]
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile, S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/.
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.
dict
[REQUIRED]
Describes the results of the transform job.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
dict
Configuration to control how SageMaker captures inference data.
DestinationS3Uri (string) -- [REQUIRED]
The Amazon S3 location being used to capture the data.
KmsKeyId (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
GenerateInferenceId (boolean) --
Flag that indicates whether to append inference id to the output.
dict
[REQUIRED]
Describes the resources, including ML instance types and ML instance count, to use for the transform job.
InstanceType (string) -- [REQUIRED]
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ``ml.m5.large``instance types.
InstanceCount (integer) -- [REQUIRED]
The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
dict
The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
InputFilter (string) --
A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $.
Examples: "$", "$[1:]", "$.features"
OutputFilter (string) --
A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.
Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"
JoinSource (string) --
Specifies the source of the data to join with the transformed data. The valid values are None and Input. The default value is None, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input. You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.
For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput.
For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.
For information on how joining in applied, see Workflow for Associating Inferences with Input Records.
list
(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
ExperimentName (string) --
The name of an existing experiment to associate with the trial component.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate with the trial component.
dict
Response Syntax
{ 'TransformJobArn': 'string' }
Response Structure
(dict) --
TransformJobArn (string) --
The Amazon Resource Name (ARN) of the transform job.
{'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'ValidationSpecification': {'ValidationProfiles': {'TransformJobDefinition': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}}}
Returns a description of the specified algorithm that is in your account.
See also: AWS API Documentation
Request Syntax
client.describe_algorithm( AlgorithmName='string' )
string
[REQUIRED]
The name of the algorithm to describe.
dict
Response Syntax
{ 'AlgorithmName': 'string', 'AlgorithmArn': 'string', 'AlgorithmDescription': 'string', 'CreationTime': datetime(2015, 1, 1), 'TrainingSpecification': { 'TrainingImage': 'string', 'TrainingImageDigest': 'string', 'SupportedHyperParameters': [ { 'Name': 'string', 'Description': 'string', 'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText', 'Range': { 'IntegerParameterRangeSpecification': { 'MinValue': 'string', 'MaxValue': 'string' }, 'ContinuousParameterRangeSpecification': { 'MinValue': 'string', 'MaxValue': 'string' }, 'CategoricalParameterRangeSpecification': { 'Values': [ 'string', ] } }, 'IsTunable': True|False, 'IsRequired': True|False, 'DefaultValue': 'string' }, ], 'SupportedTrainingInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.p5e.48xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.16xlarge'|'ml.g6.12xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.g6e.xlarge'|'ml.g6e.2xlarge'|'ml.g6e.4xlarge'|'ml.g6e.8xlarge'|'ml.g6e.16xlarge'|'ml.g6e.12xlarge'|'ml.g6e.24xlarge'|'ml.g6e.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.8xlarge'|'ml.c6i.4xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.8xlarge'|'ml.r5d.12xlarge'|'ml.r5d.16xlarge'|'ml.r5d.24xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', ], 'SupportsDistributedTraining': True|False, 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'TrainingChannels': [ { 'Name': 'string', 'Description': 'string', 'IsRequired': True|False, 'SupportedContentTypes': [ 'string', ], 'SupportedCompressionTypes': [ 'None'|'Gzip', ], 'SupportedInputModes': [ 'Pipe'|'File'|'FastFile', ] }, ], 'SupportedTuningJobObjectiveMetrics': [ { 'Type': 'Maximize'|'Minimize', 'MetricName': 'string' }, ], 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, 'InferenceSpecification': { 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, 'ValidationSpecification': { 'ValidationRole': 'string', 'ValidationProfiles': [ { 'ProfileName': 'string', 'TrainingJobDefinition': { 'TrainingInputMode': 'Pipe'|'File'|'FastFile', 'HyperParameters': { 'string': 'string' }, 'InputDataConfig': [ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ], 'InstanceGroupNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File'|'FastFile', 'ShuffleConfig': { 'Seed': 123 } }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'CompressionType': 'GZIP'|'NONE' }, 'ResourceConfig': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.p5e.48xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.16xlarge'|'ml.g6.12xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.g6e.xlarge'|'ml.g6e.2xlarge'|'ml.g6e.4xlarge'|'ml.g6e.8xlarge'|'ml.g6e.16xlarge'|'ml.g6e.12xlarge'|'ml.g6e.24xlarge'|'ml.g6e.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.8xlarge'|'ml.c6i.4xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.8xlarge'|'ml.r5d.12xlarge'|'ml.r5d.16xlarge'|'ml.r5d.24xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string', 'KeepAlivePeriodInSeconds': 123, 'InstanceGroups': [ { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.p5e.48xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.16xlarge'|'ml.g6.12xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.g6e.xlarge'|'ml.g6e.2xlarge'|'ml.g6e.4xlarge'|'ml.g6e.8xlarge'|'ml.g6e.16xlarge'|'ml.g6e.12xlarge'|'ml.g6e.24xlarge'|'ml.g6e.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.8xlarge'|'ml.c6i.4xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.8xlarge'|'ml.r5d.12xlarge'|'ml.r5d.16xlarge'|'ml.r5d.24xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'InstanceCount': 123, 'InstanceGroupName': 'string' }, ] }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123, 'MaxPendingTimeInSeconds': 123 } }, 'TransformJobDefinition': { 'MaxConcurrentTransforms': 123, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' } } }, ] }, 'AlgorithmStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting', 'AlgorithmStatusDetails': { 'ValidationStatuses': [ { 'Name': 'string', 'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed', 'FailureReason': 'string' }, ], 'ImageScanStatuses': [ { 'Name': 'string', 'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed', 'FailureReason': 'string' }, ] }, 'ProductId': 'string', 'CertifyForMarketplace': True|False }
Response Structure
(dict) --
AlgorithmName (string) --
The name of the algorithm being described.
AlgorithmArn (string) --
The Amazon Resource Name (ARN) of the algorithm.
AlgorithmDescription (string) --
A brief summary about the algorithm.
CreationTime (datetime) --
A timestamp specifying when the algorithm was created.
TrainingSpecification (dict) --
Details about training jobs run by this algorithm.
TrainingImage (string) --
The Amazon ECR registry path of the Docker image that contains the training algorithm.
TrainingImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
SupportedHyperParameters (list) --
A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
(dict) --
Defines a hyperparameter to be used by an algorithm.
Name (string) --
The name of this hyperparameter. The name must be unique.
Description (string) --
A brief description of the hyperparameter.
Type (string) --
The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.
Range (dict) --
The allowed range for this hyperparameter.
IntegerParameterRangeSpecification (dict) --
A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.
MinValue (string) --
The minimum integer value allowed.
MaxValue (string) --
The maximum integer value allowed.
ContinuousParameterRangeSpecification (dict) --
A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.
MinValue (string) --
The minimum floating-point value allowed.
MaxValue (string) --
The maximum floating-point value allowed.
CategoricalParameterRangeSpecification (dict) --
A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.
Values (list) --
The allowed categories for the hyperparameter.
(string) --
IsTunable (boolean) --
Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
IsRequired (boolean) --
Indicates whether this hyperparameter is required.
DefaultValue (string) --
The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
SupportedTrainingInstanceTypes (list) --
A list of the instance types that this algorithm can use for training.
(string) --
SupportsDistributedTraining (boolean) --
Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
MetricDefinitions (list) --
A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.
(dict) --
Specifies a metric that the training algorithm writes to stderr or stdout. You can view these logs to understand how your training job performs and check for any errors encountered during training. SageMaker hyperparameter tuning captures all defined metrics. Specify one of the defined metrics to use as an objective metric using the TuningObjective parameter in the HyperParameterTrainingJobDefinition API to evaluate job performance during hyperparameter tuning.
Name (string) --
The name of the metric.
Regex (string) --
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.
TrainingChannels (list) --
A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.
(dict) --
Defines a named input source, called a channel, to be used by an algorithm.
Name (string) --
The name of the channel.
Description (string) --
A brief description of the channel.
IsRequired (boolean) --
Indicates whether the channel is required by the algorithm.
SupportedContentTypes (list) --
The supported MIME types for the data.
(string) --
SupportedCompressionTypes (list) --
The allowed compression types, if data compression is used.
(string) --
SupportedInputModes (list) --
The allowed input mode, either FILE or PIPE.
In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.
In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
(string) --
The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
SupportedTuningJobObjectiveMetrics (list) --
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
(dict) --
Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter. If you want to define a custom objective metric, see Define metrics and environment variables.
Type (string) --
Whether to minimize or maximize the objective metric.
MetricName (string) --
The name of the metric to use for the objective metric.
AdditionalS3DataSource (dict) --
The additional data source used during the training job.
S3DataType (string) --
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) --
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
InferenceSpecification (dict) --
Details about inference jobs that the algorithm runs.
Containers (list) --
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) --
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) --
Specifies the S3 path of ML model data to deploy.
S3DataType (string) --
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) --
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) --
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) --
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) --
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) --
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) --
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
ValidationSpecification (dict) --
Details about configurations for one or more training jobs that SageMaker runs to test the algorithm.
ValidationRole (string) --
The IAM roles that SageMaker uses to run the training jobs.
ValidationProfiles (list) --
An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.
(dict) --
Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.
The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.
ProfileName (string) --
The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
TrainingJobDefinition (dict) --
The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.
TrainingInputMode (string) --
The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
HyperParameters (dict) --
The hyperparameters used for the training job.
(string) --
(string) --
InputDataConfig (list) --
An array of Channel objects, each of which specifies an input source.
(dict) --
A channel is a named input source that training algorithms can consume.
ChannelName (string) --
The name of the channel.
DataSource (dict) --
The location of the channel data.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.
If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.
S3Uri (string) --
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/
A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
Your input bucket must be located in same Amazon Web Services region as your training job.
S3DataDistributionType (string) --
If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated.
If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.
AttributeNames (list) --
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string) --
InstanceGroupNames (list) --
A list of names of instance groups that get data from the S3 data source.
(string) --
FileSystemDataSource (dict) --
The file system that is associated with a channel.
FileSystemId (string) --
The file system id.
FileSystemAccessMode (string) --
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
FileSystemType (string) --
The file system type.
DirectoryPath (string) --
The full path to the directory to associate with the channel.
ContentType (string) --
The MIME type of the data.
CompressionType (string) --
If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
RecordWrapperType (string) --
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
InputMode (string) --
(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.
To use a model for incremental training, choose File input model.
ShuffleConfig (dict) --
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.
For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
Seed (integer) --
Determines the shuffling order in ShuffleConfig value.
OutputDataConfig (dict) --
the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. If the output data is stored in Amazon S3 Express One Zone, it is encrypted with server-side encryption with Amazon S3 managed keys (SSE-S3). KMS key is not supported for Amazon S3 Express One Zone
The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
S3OutputPath (string) --
Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
CompressionType (string) --
The model output compression type. Select None to output an uncompressed model, recommended for large model outputs. Defaults to gzip.
ResourceConfig (dict) --
The resources, including the ML compute instances and ML storage volumes, to use for model training.
InstanceType (string) --
The ML compute instance type.
InstanceCount (integer) --
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB (integer) --
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.
When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d, ml.g4dn, and ml.g5.
When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2.
To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId (string) --
The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
The VolumeKmsKeyId can be in any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
KeepAlivePeriodInSeconds (integer) --
The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
InstanceGroups (list) --
The configuration of a heterogeneous cluster in JSON format.
(dict) --
Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .
InstanceType (string) --
Specifies the instance type of the instance group.
InstanceCount (integer) --
Specifies the number of instances of the instance group.
InstanceGroupName (string) --
Specifies the name of the instance group.
StoppingCondition (dict) --
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
MaxRuntimeInSeconds (integer) --
The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.
For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.
The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.
MaxWaitTimeInSeconds (integer) --
The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds. If the job does not complete during this time, SageMaker ends the job.
When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.
MaxPendingTimeInSeconds (integer) --
The maximum length of time, in seconds, that a training or compilation job can be pending before it is stopped.
TransformJobDefinition (dict) --
The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.
MaxConcurrentTransforms (integer) --
The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
MaxPayloadInMB (integer) --
The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
BatchStrategy (string) --
A string that determines the number of records included in a single mini-batch.
SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
Environment (dict) --
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
TransformInput (dict) --
A description of the input source and the way the transform job consumes it.
DataSource (dict) --
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile, S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) --
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/.
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.
TransformOutput (dict) --
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath (string) --
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
TransformResources (dict) --
Identifies the ML compute instances for the transform job.
InstanceType (string) --
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ``ml.m5.large``instance types.
InstanceCount (integer) --
The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
AlgorithmStatus (string) --
The current status of the algorithm.
AlgorithmStatusDetails (dict) --
Details about the current status of the algorithm.
ValidationStatuses (list) --
The status of algorithm validation.
(dict) --
Represents the overall status of an algorithm.
Name (string) --
The name of the algorithm for which the overall status is being reported.
Status (string) --
The current status.
FailureReason (string) --
if the overall status is Failed, the reason for the failure.
ImageScanStatuses (list) --
The status of the scan of the algorithm's Docker image container.
(dict) --
Represents the overall status of an algorithm.
Name (string) --
The name of the algorithm for which the overall status is being reported.
Status (string) --
The current status.
FailureReason (string) --
if the overall status is Failed, the reason for the failure.
ProductId (string) --
The product identifier of the algorithm.
CertifyForMarketplace (boolean) --
Whether the algorithm is certified to be listed in Amazon Web Services Marketplace.
{'ModelVariants': {'InfrastructureConfig': {'RealTimeInferenceConfig': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}}}}
Returns details about an inference experiment.
See also: AWS API Documentation
Request Syntax
client.describe_inference_experiment( Name='string' )
string
[REQUIRED]
The name of the inference experiment to describe.
dict
Response Syntax
{ 'Arn': 'string', 'Name': 'string', 'Type': 'ShadowMode', 'Schedule': { 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, 'Status': 'Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled', 'StatusReason': 'string', 'Description': 'string', 'CreationTime': datetime(2015, 1, 1), 'CompletionTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'RoleArn': 'string', 'EndpointMetadata': { 'EndpointName': 'string', 'EndpointConfigName': 'string', 'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed'|'UpdateRollbackFailed', 'FailureReason': 'string' }, 'ModelVariants': [ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', 'InstanceCount': 123 } }, 'Status': 'Creating'|'Updating'|'InService'|'Deleting'|'Deleted' }, ], 'DataStorageConfig': { 'Destination': 'string', 'KmsKey': 'string', 'ContentType': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, 'ShadowModeConfig': { 'SourceModelVariantName': 'string', 'ShadowModelVariants': [ { 'ShadowModelVariantName': 'string', 'SamplingPercentage': 123 }, ] }, 'KmsKey': 'string' }
Response Structure
(dict) --
Arn (string) --
The ARN of the inference experiment being described.
Name (string) --
The name of the inference experiment.
Type (string) --
The type of the inference experiment.
Schedule (dict) --
The duration for which the inference experiment ran or will run.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
Status (string) --
The status of the inference experiment. The following are the possible statuses for an inference experiment:
Creating - Amazon SageMaker is creating your experiment.
Created - Amazon SageMaker has finished the creation of your experiment and will begin the experiment at the scheduled time.
Updating - When you make changes to your experiment, your experiment shows as updating.
Starting - Amazon SageMaker is beginning your experiment.
Running - Your experiment is in progress.
Stopping - Amazon SageMaker is stopping your experiment.
Completed - Your experiment has completed.
Cancelled - When you conclude your experiment early using the StopInferenceExperiment API, or if any operation fails with an unexpected error, it shows as cancelled.
StatusReason (string) --
The error message or client-specified Reason from the StopInferenceExperiment API, that explains the status of the inference experiment.
Description (string) --
The description of the inference experiment.
CreationTime (datetime) --
The timestamp at which you created the inference experiment.
CompletionTime (datetime) --
The timestamp at which the inference experiment was completed.
LastModifiedTime (datetime) --
The timestamp at which you last modified the inference experiment.
RoleArn (string) --
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
EndpointMetadata (dict) --
The metadata of the endpoint on which the inference experiment ran.
EndpointName (string) --
The name of the endpoint.
EndpointConfigName (string) --
The name of the endpoint configuration.
EndpointStatus (string) --
The status of the endpoint. For possible values of the status of an endpoint, see EndpointSummary.
FailureReason (string) --
If the status of the endpoint is Failed, or the status is InService but update operation fails, this provides the reason why it failed.
ModelVariants (list) --
An array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.
(dict) --
Summary of the deployment configuration of a model.
ModelName (string) --
The name of the Amazon SageMaker Model entity.
VariantName (string) --
The name of the variant.
InfrastructureConfig (dict) --
The configuration of the infrastructure that the model has been deployed to.
InfrastructureType (string) --
The inference option to which to deploy your model. Possible values are the following:
RealTime: Deploy to real-time inference.
RealTimeInferenceConfig (dict) --
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) --
The instance type the model is deployed to.
InstanceCount (integer) --
The number of instances of the type specified by InstanceType.
Status (string) --
The status of deployment for the model variant on the hosted inference endpoint.
Creating - Amazon SageMaker is preparing the model variant on the hosted inference endpoint.
InService - The model variant is running on the hosted inference endpoint.
Updating - Amazon SageMaker is updating the model variant on the hosted inference endpoint.
Deleting - Amazon SageMaker is deleting the model variant on the hosted inference endpoint.
Deleted - The model variant has been deleted on the hosted inference endpoint. This can only happen after stopping the experiment.
DataStorageConfig (dict) --
The Amazon S3 location and configuration for storing inference request and response data.
Destination (string) --
The Amazon S3 bucket where the inference request and response data is stored.
KmsKey (string) --
The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.
ContentType (dict) --
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
ShadowModeConfig (dict) --
The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.
SourceModelVariantName (string) --
The name of the production variant, which takes all the inference requests.
ShadowModelVariants (list) --
List of shadow variant configurations.
(dict) --
The name and sampling percentage of a shadow variant.
ShadowModelVariantName (string) --
The name of the shadow variant.
SamplingPercentage (integer) --
The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.
KmsKey (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperiment.
{'AdditionalInferenceSpecifications': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'ValidationSpecification': {'ValidationProfiles': {'TransformJobDefinition': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}}}
Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
See also: AWS API Documentation
Request Syntax
client.describe_model_package( ModelPackageName='string' )
string
[REQUIRED]
The name or Amazon Resource Name (ARN) of the model package to describe.
When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
dict
Response Syntax
{ 'ModelPackageName': 'string', 'ModelPackageGroupName': 'string', 'ModelPackageVersion': 123, 'ModelPackageArn': 'string', 'ModelPackageDescription': 'string', 'CreationTime': datetime(2015, 1, 1), 'InferenceSpecification': { 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, 'SourceAlgorithmSpecification': { 'SourceAlgorithms': [ { 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'AlgorithmName': 'string' }, ] }, 'ValidationSpecification': { 'ValidationRole': 'string', 'ValidationProfiles': [ { 'ProfileName': 'string', 'TransformJobDefinition': { 'MaxConcurrentTransforms': 123, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' } } }, ] }, 'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting', 'ModelPackageStatusDetails': { 'ValidationStatuses': [ { 'Name': 'string', 'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed', 'FailureReason': 'string' }, ], 'ImageScanStatuses': [ { 'Name': 'string', 'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed', 'FailureReason': 'string' }, ] }, 'CertifyForMarketplace': True|False, 'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval', 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string', 'IamIdentity': { 'Arn': 'string', 'PrincipalId': 'string', 'SourceIdentity': 'string' } }, 'MetadataProperties': { 'CommitId': 'string', 'Repository': 'string', 'GeneratedBy': 'string', 'ProjectId': 'string' }, 'ModelMetrics': { 'ModelQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelDataQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Bias': { 'Report': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PreTrainingReport': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PostTrainingReport': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Explainability': { 'Report': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } } }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string', 'IamIdentity': { 'Arn': 'string', 'PrincipalId': 'string', 'SourceIdentity': 'string' } }, 'ApprovalDescription': 'string', 'Domain': 'string', 'Task': 'string', 'SamplePayloadUrl': 'string', 'CustomerMetadataProperties': { 'string': 'string' }, 'DriftCheckBaselines': { 'Bias': { 'ConfigFile': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PreTrainingConstraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'PostTrainingConstraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Explainability': { 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'ConfigFile': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelDataQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } } }, 'AdditionalInferenceSpecifications': [ { 'Name': 'string', 'Description': 'string', 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, ], 'SkipModelValidation': 'All'|'None', 'SourceUri': 'string', 'SecurityConfig': { 'KmsKeyId': 'string' }, 'ModelCard': { 'ModelCardContent': 'string', 'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived' }, 'ModelLifeCycle': { 'Stage': 'string', 'StageStatus': 'string', 'StageDescription': 'string' } }
Response Structure
(dict) --
ModelPackageName (string) --
The name of the model package being described.
ModelPackageGroupName (string) --
If the model is a versioned model, the name of the model group that the versioned model belongs to.
ModelPackageVersion (integer) --
The version of the model package.
ModelPackageArn (string) --
The Amazon Resource Name (ARN) of the model package.
ModelPackageDescription (string) --
A brief summary of the model package.
CreationTime (datetime) --
A timestamp specifying when the model package was created.
InferenceSpecification (dict) --
Details about inference jobs that you can run with models based on this model package.
Containers (list) --
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) --
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) --
Specifies the S3 path of ML model data to deploy.
S3DataType (string) --
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) --
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) --
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) --
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) --
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) --
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) --
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
SourceAlgorithmSpecification (dict) --
Details about the algorithm that was used to create the model package.
SourceAlgorithms (list) --
A list of the algorithms that were used to create a model package.
(dict) --
Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) --
Specifies the S3 path of ML model data to deploy.
S3DataType (string) --
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) --
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) --
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) --
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
AlgorithmName (string) --
The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
ValidationSpecification (dict) --
Configurations for one or more transform jobs that SageMaker runs to test the model package.
ValidationRole (string) --
The IAM roles to be used for the validation of the model package.
ValidationProfiles (list) --
An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.
(dict) --
Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.
The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.
ProfileName (string) --
The name of the profile for the model package.
TransformJobDefinition (dict) --
The TransformJobDefinition object that describes the transform job used for the validation of the model package.
MaxConcurrentTransforms (integer) --
The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
MaxPayloadInMB (integer) --
The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
BatchStrategy (string) --
A string that determines the number of records included in a single mini-batch.
SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
Environment (dict) --
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
TransformInput (dict) --
A description of the input source and the way the transform job consumes it.
DataSource (dict) --
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile, S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) --
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/.
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.
TransformOutput (dict) --
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath (string) --
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
TransformResources (dict) --
Identifies the ML compute instances for the transform job.
InstanceType (string) --
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ``ml.m5.large``instance types.
InstanceCount (integer) --
The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
ModelPackageStatus (string) --
The current status of the model package.
ModelPackageStatusDetails (dict) --
Details about the current status of the model package.
ValidationStatuses (list) --
The validation status of the model package.
(dict) --
Represents the overall status of a model package.
Name (string) --
The name of the model package for which the overall status is being reported.
Status (string) --
The current status.
FailureReason (string) --
if the overall status is Failed, the reason for the failure.
ImageScanStatuses (list) --
The status of the scan of the Docker image container for the model package.
(dict) --
Represents the overall status of a model package.
Name (string) --
The name of the model package for which the overall status is being reported.
Status (string) --
The current status.
FailureReason (string) --
if the overall status is Failed, the reason for the failure.
CertifyForMarketplace (boolean) --
Whether the model package is certified for listing on Amazon Web Services Marketplace.
ModelApprovalStatus (string) --
The approval status of the model package.
CreatedBy (dict) --
Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
UserProfileArn (string) --
The Amazon Resource Name (ARN) of the user's profile.
UserProfileName (string) --
The name of the user's profile.
DomainId (string) --
The domain associated with the user.
IamIdentity (dict) --
The IAM Identity details associated with the user. These details are associated with model package groups, model packages, and project entities only.
Arn (string) --
The Amazon Resource Name (ARN) of the IAM identity.
PrincipalId (string) --
The ID of the principal that assumes the IAM identity.
SourceIdentity (string) --
The person or application which assumes the IAM identity.
MetadataProperties (dict) --
Metadata properties of the tracking entity, trial, or trial component.
CommitId (string) --
The commit ID.
Repository (string) --
The repository.
GeneratedBy (string) --
The entity this entity was generated by.
ProjectId (string) --
The project ID.
ModelMetrics (dict) --
Metrics for the model.
ModelQuality (dict) --
Metrics that measure the quality of a model.
Statistics (dict) --
Model quality statistics.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Constraints (dict) --
Model quality constraints.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
ModelDataQuality (dict) --
Metrics that measure the quality of the input data for a model.
Statistics (dict) --
Data quality statistics for a model.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Constraints (dict) --
Data quality constraints for a model.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Bias (dict) --
Metrics that measure bias in a model.
Report (dict) --
The bias report for a model
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
PreTrainingReport (dict) --
The pre-training bias report for a model.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
PostTrainingReport (dict) --
The post-training bias report for a model.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Explainability (dict) --
Metrics that help explain a model.
Report (dict) --
The explainability report for a model.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
LastModifiedTime (datetime) --
The last time that the model package was modified.
LastModifiedBy (dict) --
Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
UserProfileArn (string) --
The Amazon Resource Name (ARN) of the user's profile.
UserProfileName (string) --
The name of the user's profile.
DomainId (string) --
The domain associated with the user.
IamIdentity (dict) --
The IAM Identity details associated with the user. These details are associated with model package groups, model packages, and project entities only.
Arn (string) --
The Amazon Resource Name (ARN) of the IAM identity.
PrincipalId (string) --
The ID of the principal that assumes the IAM identity.
SourceIdentity (string) --
The person or application which assumes the IAM identity.
ApprovalDescription (string) --
A description provided for the model approval.
Domain (string) --
The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.
Task (string) --
The machine learning task you specified that your model package accomplishes. Common machine learning tasks include object detection and image classification.
SamplePayloadUrl (string) --
The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).
CustomerMetadataProperties (dict) --
The metadata properties associated with the model package versions.
(string) --
(string) --
DriftCheckBaselines (dict) --
Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
Bias (dict) --
Represents the drift check bias baselines that can be used when the model monitor is set using the model package.
ConfigFile (dict) --
The bias config file for a model.
ContentType (string) --
The type of content stored in the file source.
ContentDigest (string) --
The digest of the file source.
S3Uri (string) --
The Amazon S3 URI for the file source.
PreTrainingConstraints (dict) --
The pre-training constraints.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
PostTrainingConstraints (dict) --
The post-training constraints.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Explainability (dict) --
Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.
Constraints (dict) --
The drift check explainability constraints.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
ConfigFile (dict) --
The explainability config file for the model.
ContentType (string) --
The type of content stored in the file source.
ContentDigest (string) --
The digest of the file source.
S3Uri (string) --
The Amazon S3 URI for the file source.
ModelQuality (dict) --
Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.
Statistics (dict) --
The drift check model quality statistics.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Constraints (dict) --
The drift check model quality constraints.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
ModelDataQuality (dict) --
Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.
Statistics (dict) --
The drift check model data quality statistics.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
Constraints (dict) --
The drift check model data quality constraints.
ContentType (string) --
The metric source content type.
ContentDigest (string) --
The hash key used for the metrics source.
S3Uri (string) --
The S3 URI for the metrics source.
AdditionalInferenceSpecifications (list) --
An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
(dict) --
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
Name (string) --
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.
Description (string) --
A description of the additional Inference specification
Containers (list) --
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) --
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) --
Specifies the S3 path of ML model data to deploy.
S3DataType (string) --
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) --
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) --
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) --
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) --
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) --
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) --
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
SkipModelValidation (string) --
Indicates if you want to skip model validation.
SourceUri (string) --
The URI of the source for the model package.
SecurityConfig (dict) --
The KMS Key ID ( KMSKeyId) used for encryption of model package information.
KmsKeyId (string) --
The KMS Key ID ( KMSKeyId) used for encryption of model package information.
ModelCard (dict) --
The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.
ModelCardContent (string) --
The content of the model card. The content must follow the schema described in Model Package Model Card Schema.
ModelCardStatus (string) --
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft: The model card is a work in progress.
PendingReview: The model card is pending review.
Approved: The model card is approved.
Archived: The model card is archived. No more updates can be made to the model card content. If you try to update the model card content, you will receive the message Model Card is in Archived state.
ModelLifeCycle (dict) --
A structure describing the current state of the model in its life cycle.
Stage (string) --
The current stage in the model life cycle.
StageStatus (string) --
The current status of a stage in model life cycle.
StageDescription (string) --
Describes the stage related details.
{'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}
Returns information about a notebook instance.
See also: AWS API Documentation
Request Syntax
client.describe_notebook_instance( NotebookInstanceName='string' )
string
[REQUIRED]
The name of the notebook instance that you want information about.
dict
Response Syntax
{ 'NotebookInstanceArn': 'string', 'NotebookInstanceName': 'string', 'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating', 'FailureReason': 'string', 'Url': 'string', 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', 'SubnetId': 'string', 'SecurityGroups': [ 'string', ], 'RoleArn': 'string', 'KmsKeyId': 'string', 'NetworkInterfaceId': 'string', 'LastModifiedTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'NotebookInstanceLifecycleConfigName': 'string', 'DirectInternetAccess': 'Enabled'|'Disabled', 'VolumeSizeInGB': 123, 'AcceleratorTypes': [ 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', ], 'DefaultCodeRepository': 'string', 'AdditionalCodeRepositories': [ 'string', ], 'RootAccess': 'Enabled'|'Disabled', 'PlatformIdentifier': 'string', 'InstanceMetadataServiceConfiguration': { 'MinimumInstanceMetadataServiceVersion': 'string' } }
Response Structure
(dict) --
NotebookInstanceArn (string) --
The Amazon Resource Name (ARN) of the notebook instance.
NotebookInstanceName (string) --
The name of the SageMaker notebook instance.
NotebookInstanceStatus (string) --
The status of the notebook instance.
FailureReason (string) --
If status is Failed, the reason it failed.
Url (string) --
The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
InstanceType (string) --
The type of ML compute instance running on the notebook instance.
SubnetId (string) --
The ID of the VPC subnet.
SecurityGroups (list) --
The IDs of the VPC security groups.
(string) --
RoleArn (string) --
The Amazon Resource Name (ARN) of the IAM role associated with the instance.
KmsKeyId (string) --
The Amazon Web Services KMS key ID SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
NetworkInterfaceId (string) --
The network interface IDs that SageMaker created at the time of creating the instance.
LastModifiedTime (datetime) --
A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
CreationTime (datetime) --
A timestamp. Use this parameter to return the time when the notebook instance was created
NotebookInstanceLifecycleConfigName (string) --
Returns the name of a notebook instance lifecycle configuration.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
DirectInternetAccess (string) --
Describes whether SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to SageMaker training and endpoint services.
For more information, see Notebook Instances Are Internet-Enabled by Default.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the notebook instance.
AcceleratorTypes (list) --
This parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of the EI instance types associated with this notebook instance.
(string) --
DefaultCodeRepository (string) --
The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
AdditionalCodeRepositories (list) --
An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
(string) --
RootAccess (string) --
Whether root access is enabled or disabled for users of the notebook instance.
PlatformIdentifier (string) --
The platform identifier of the notebook instance runtime environment.
InstanceMetadataServiceConfiguration (dict) --
Information on the IMDS configuration of the notebook instance
MinimumInstanceMetadataServiceVersion (string) --
Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance, if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance, there is no default.
{'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}
Returns information about a transform job.
See also: AWS API Documentation
Request Syntax
client.describe_transform_job( TransformJobName='string' )
string
[REQUIRED]
The name of the transform job that you want to view details of.
dict
Response Syntax
{ 'TransformJobName': 'string', 'TransformJobArn': 'string', 'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'FailureReason': 'string', 'ModelName': 'string', 'MaxConcurrentTransforms': 123, 'ModelClientConfig': { 'InvocationsTimeoutInSeconds': 123, 'InvocationsMaxRetries': 123 }, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'DataCaptureConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'GenerateInferenceId': True|False }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'TransformStartTime': datetime(2015, 1, 1), 'TransformEndTime': datetime(2015, 1, 1), 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'DataProcessing': { 'InputFilter': 'string', 'OutputFilter': 'string', 'JoinSource': 'Input'|'None' }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' } }
Response Structure
(dict) --
TransformJobName (string) --
The name of the transform job.
TransformJobArn (string) --
The Amazon Resource Name (ARN) of the transform job.
TransformJobStatus (string) --
The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.
FailureReason (string) --
If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.
ModelName (string) --
The name of the model used in the transform job.
MaxConcurrentTransforms (integer) --
The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
ModelClientConfig (dict) --
The timeout and maximum number of retries for processing a transform job invocation.
InvocationsTimeoutInSeconds (integer) --
The timeout value in seconds for an invocation request. The default value is 600.
InvocationsMaxRetries (integer) --
The maximum number of retries when invocation requests are failing. The default value is 3.
MaxPayloadInMB (integer) --
The maximum payload size, in MB, used in the transform job.
BatchStrategy (string) --
Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.
Environment (dict) --
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
TransformInput (dict) --
Describes the dataset to be transformed and the Amazon S3 location where it is stored.
DataSource (dict) --
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile, S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) --
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix/.
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.
TransformOutput (dict) --
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath (string) --
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix.
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
DataCaptureConfig (dict) --
Configuration to control how SageMaker captures inference data.
DestinationS3Uri (string) --
The Amazon S3 location being used to capture the data.
KmsKeyId (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
GenerateInferenceId (boolean) --
Flag that indicates whether to append inference id to the output.
TransformResources (dict) --
Describes the resources, including ML instance types and ML instance count, to use for the transform job.
InstanceType (string) --
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ``ml.m5.large``instance types.
InstanceCount (integer) --
The number of ML compute instances to use in the transform job. The default value is 1, and the maximum is 100. For distributed transform jobs, specify a value greater than 1.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
CreationTime (datetime) --
A timestamp that shows when the transform Job was created.
TransformStartTime (datetime) --
Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
TransformEndTime (datetime) --
Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
LabelingJobArn (string) --
The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
AutoMLJobArn (string) --
The Amazon Resource Name (ARN) of the AutoML transform job.
DataProcessing (dict) --
The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
InputFilter (string) --
A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $.
Examples: "$", "$[1:]", "$.features"
OutputFilter (string) --
A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.
Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"
JoinSource (string) --
Specifies the source of the data to join with the transformed data. The valid values are None and Input. The default value is None, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input. You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.
For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput.
For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.
For information on how joining in applied, see Workflow for Associating Inferences with Input Records.
ExperimentConfig (dict) --
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
ExperimentName (string) --
The name of an existing experiment to associate with the trial component.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate with the trial component.
{'NotebookInstances': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}}
Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services Region.
See also: AWS API Documentation
Request Syntax
client.list_notebook_instances( NextToken='string', MaxResults=123, SortBy='Name'|'CreationTime'|'Status', SortOrder='Ascending'|'Descending', NameContains='string', CreationTimeBefore=datetime(2015, 1, 1), CreationTimeAfter=datetime(2015, 1, 1), LastModifiedTimeBefore=datetime(2015, 1, 1), LastModifiedTimeAfter=datetime(2015, 1, 1), StatusEquals='Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating', NotebookInstanceLifecycleConfigNameContains='string', DefaultCodeRepositoryContains='string', AdditionalCodeRepositoryEquals='string' )
string
If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances.
integer
The maximum number of notebook instances to return.
string
The field to sort results by. The default is Name.
string
The sort order for results.
string
A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
datetime
A filter that returns only notebook instances that were created before the specified time (timestamp).
datetime
A filter that returns only notebook instances that were created after the specified time (timestamp).
datetime
A filter that returns only notebook instances that were modified before the specified time (timestamp).
datetime
A filter that returns only notebook instances that were modified after the specified time (timestamp).
string
A filter that returns only notebook instances with the specified status.
string
A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
string
A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
string
A filter that returns only notebook instances with associated with the specified git repository.
dict
Response Syntax
{ 'NextToken': 'string', 'NotebookInstances': [ { 'NotebookInstanceName': 'string', 'NotebookInstanceArn': 'string', 'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating', 'Url': 'string', 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'NotebookInstanceLifecycleConfigName': 'string', 'DefaultCodeRepository': 'string', 'AdditionalCodeRepositories': [ 'string', ] }, ] }
Response Structure
(dict) --
NextToken (string) --
If the response to the previous ListNotebookInstances request was truncated, SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.
NotebookInstances (list) --
An array of NotebookInstanceSummary objects, one for each notebook instance.
(dict) --
Provides summary information for an SageMaker notebook instance.
NotebookInstanceName (string) --
The name of the notebook instance that you want a summary for.
NotebookInstanceArn (string) --
The Amazon Resource Name (ARN) of the notebook instance.
NotebookInstanceStatus (string) --
The status of the notebook instance.
Url (string) --
The URL that you use to connect to the Jupyter notebook running in your notebook instance.
InstanceType (string) --
The type of ML compute instance that the notebook instance is running on.
CreationTime (datetime) --
A timestamp that shows when the notebook instance was created.
LastModifiedTime (datetime) --
A timestamp that shows when the notebook instance was last modified.
NotebookInstanceLifecycleConfigName (string) --
The name of a notebook instance lifecycle configuration associated with this notebook instance.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
DefaultCodeRepository (string) --
The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
AdditionalCodeRepositories (list) --
An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
(string) --
{'Results': {'Model': {'LastBatchTransformJob': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}, 'ModelPackage': {'AdditionalInferenceSpecifications': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'ValidationSpecification': {'ValidationProfiles': {'TransformJobDefinition': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}}}, 'TrialComponent': {'SourceDetail': {'TransformJob': {'TransformResources': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}}}}}
Finds SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.
You can query against the following value types: numeric, text, Boolean, and timestamp.
See also: AWS API Documentation
Request Syntax
client.search( Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'Model'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup'|'FeatureMetadata'|'Image'|'ImageVersion'|'Project'|'HyperParameterTuningJob'|'ModelCard', SearchExpression={ 'Filters': [ { 'Name': 'string', 'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In', 'Value': 'string' }, ], 'NestedFilters': [ { 'NestedPropertyName': 'string', 'Filters': [ { 'Name': 'string', 'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In', 'Value': 'string' }, ] }, ], 'SubExpressions': [ {'... recursive ...'}, ], 'Operator': 'And'|'Or' }, SortBy='string', SortOrder='Ascending'|'Descending', NextToken='string', MaxResults=123, CrossAccountFilterOption='SameAccount'|'CrossAccount', VisibilityConditions=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name of the SageMaker resource to search for.
dict
A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions, NestedFilters, and Filters that can be included in a SearchExpression object is 50.
Filters (list) --
A list of filter objects.
(dict) --
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a Value, but not an Operator, SageMaker uses the equals operator.
In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form "Metrics.<name>", where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9":
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>". Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5":
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form Tags.<key>.
Name (string) -- [REQUIRED]
A resource property name. For example, TrainingJobName. For valid property names, see SearchRecord. You must specify a valid property for the resource.
Operator (string) --
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of Name equals Value.
NotEquals
The value of Name doesn't equal Value.
Exists
The Name property exists.
NotExists
The Name property does not exist.
GreaterThan
The value of Name is greater than Value. Not supported for text properties.
GreaterThanOrEqualTo
The value of Name is greater than or equal to Value. Not supported for text properties.
LessThan
The value of Name is less than Value. Not supported for text properties.
LessThanOrEqualTo
The value of Name is less than or equal to Value. Not supported for text properties.
In
The value of Name is one of the comma delimited strings in Value. Only supported for text properties.
Contains
The value of Name contains the string Value. Only supported for text properties.
A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A SearchExpression can include only one Contains operator for all other values of Name. In these cases, if you include multiple Contains operators in the SearchExpression, the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded."
Value (string) --
A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
NestedFilters (list) --
A list of nested filter objects.
(dict) --
A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.
For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:
'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
NestedPropertyName (string) -- [REQUIRED]
The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig.
Filters (list) -- [REQUIRED]
A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.
(dict) --
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a Value, but not an Operator, SageMaker uses the equals operator.
In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form "Metrics.<name>", where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9":
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>". Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5":
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form Tags.<key>.
Name (string) -- [REQUIRED]
A resource property name. For example, TrainingJobName. For valid property names, see SearchRecord. You must specify a valid property for the resource.
Operator (string) --
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of Name equals Value.
NotEquals
The value of Name doesn't equal Value.
Exists
The Name property exists.
NotExists
The Name property does not exist.
GreaterThan
The value of Name is greater than Value. Not supported for text properties.
GreaterThanOrEqualTo
The value of Name is greater than or equal to Value. Not supported for text properties.
LessThan
The value of Name is less than Value. Not supported for text properties.
LessThanOrEqualTo
The value of Name is less than or equal to Value. Not supported for text properties.
In
The value of Name is one of the comma delimited strings in Value. Only supported for text properties.
Contains
The value of Name contains the string Value. Only supported for text properties.
A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A SearchExpression can include only one Contains operator for all other values of Name. In these cases, if you include multiple Contains operators in the SearchExpression, the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded."
Value (string) --
A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
SubExpressions (list) --
A list of search expression objects.
(dict) --
A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.
A SearchExpression contains the following components:
A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.
A Boolean operator: And or Or.
Operator (string) --
A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And. If only a single conditional statement needs to be true for the entire search expression to be true, specify Or. The default value is And.
string
The name of the resource property used to sort the SearchResults. The default is LastModifiedTime.
string
How SearchResults are ordered. Valid values are Ascending or Descending. The default is Descending.
string
If more than MaxResults resources match the specified SearchExpression, the response includes a NextToken. The NextToken can be passed to the next SearchRequest to continue retrieving results.
integer
The maximum number of results to return.
string
A cross account filter option. When the value is "CrossAccount" the search results will only include resources made discoverable to you from other accounts. When the value is "SameAccount" or null the search results will only include resources from your account. Default is null. For more information on searching for resources made discoverable to your account, see Search discoverable resources in the SageMaker Developer Guide. The maximum number of ``ResourceCatalog``s viewable is 1000.
list
Limits the results of your search request to the resources that you can access.
(dict) --
The list of key-value pairs used to filter your search results. If a search result contains a key from your list, it is included in the final search response if the value associated with the key in the result matches the value you specified. If the value doesn't match, the result is excluded from the search response. Any resources that don't have a key from the list that you've provided will also be included in the search response.
Key (string) --
The key that specifies the tag that you're using to filter the search results. It must be in the following format: Tags.<key>.
Value (string) --
The value for the tag that you're using to filter the search results.
dict
Response Syntax
# This section is too large to render. # Please see the AWS API Documentation linked below.
Response Structure
# This section is too large to render. # Please see the AWS API Documentation linked below.
{'DesiredModelVariants': {'InfrastructureConfig': {'RealTimeInferenceConfig': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}}}}
Stops an inference experiment.
See also: AWS API Documentation
Request Syntax
client.stop_inference_experiment( Name='string', ModelVariantActions={ 'string': 'Retain'|'Remove'|'Promote' }, DesiredModelVariants=[ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', 'InstanceCount': 123 } } }, ], DesiredState='Completed'|'Cancelled', Reason='string' )
string
[REQUIRED]
The name of the inference experiment to stop.
dict
[REQUIRED]
Array of key-value pairs, with names of variants mapped to actions. The possible actions are the following:
Promote - Promote the shadow variant to a production variant
Remove - Delete the variant
Retain - Keep the variant as it is
(string) --
(string) --
list
An array of ModelVariantConfig objects. There is one for each variant that you want to deploy after the inference experiment stops. Each ModelVariantConfig describes the infrastructure configuration for deploying the corresponding variant.
(dict) --
Contains information about the deployment options of a model.
ModelName (string) -- [REQUIRED]
The name of the Amazon SageMaker Model entity.
VariantName (string) -- [REQUIRED]
The name of the variant.
InfrastructureConfig (dict) -- [REQUIRED]
The configuration for the infrastructure that the model will be deployed to.
InfrastructureType (string) -- [REQUIRED]
The inference option to which to deploy your model. Possible values are the following:
RealTime: Deploy to real-time inference.
RealTimeInferenceConfig (dict) -- [REQUIRED]
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) -- [REQUIRED]
The instance type the model is deployed to.
InstanceCount (integer) -- [REQUIRED]
The number of instances of the type specified by InstanceType.
string
The desired state of the experiment after stopping. The possible states are the following:
Completed: The experiment completed successfully
Cancelled: The experiment was canceled
string
The reason for stopping the experiment.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN of the stopped inference experiment.
{'ModelVariants': {'InfrastructureConfig': {'RealTimeInferenceConfig': {'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}}}}
Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperiment.
See also: AWS API Documentation
Request Syntax
client.update_inference_experiment( Name='string', Schedule={ 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, Description='string', ModelVariants=[ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', 'InstanceCount': 123 } } }, ], DataStorageConfig={ 'Destination': 'string', 'KmsKey': 'string', 'ContentType': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, ShadowModeConfig={ 'SourceModelVariantName': 'string', 'ShadowModelVariants': [ { 'ShadowModelVariantName': 'string', 'SamplingPercentage': 123 }, ] } )
string
[REQUIRED]
The name of the inference experiment to be updated.
dict
The duration for which the inference experiment will run. If the status of the inference experiment is Created, then you can update both the start and end dates. If the status of the inference experiment is Running, then you can update only the end date.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
string
The description of the inference experiment.
list
An array of ModelVariantConfig objects. There is one for each variant, whose infrastructure configuration you want to update.
(dict) --
Contains information about the deployment options of a model.
ModelName (string) -- [REQUIRED]
The name of the Amazon SageMaker Model entity.
VariantName (string) -- [REQUIRED]
The name of the variant.
InfrastructureConfig (dict) -- [REQUIRED]
The configuration for the infrastructure that the model will be deployed to.
InfrastructureType (string) -- [REQUIRED]
The inference option to which to deploy your model. Possible values are the following:
RealTime: Deploy to real-time inference.
RealTimeInferenceConfig (dict) -- [REQUIRED]
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) -- [REQUIRED]
The instance type the model is deployed to.
InstanceCount (integer) -- [REQUIRED]
The number of instances of the type specified by InstanceType.
dict
The Amazon S3 location and configuration for storing inference request and response data.
Destination (string) -- [REQUIRED]
The Amazon S3 bucket where the inference request and response data is stored.
KmsKey (string) --
The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.
ContentType (dict) --
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
dict
The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
SourceModelVariantName (string) -- [REQUIRED]
The name of the production variant, which takes all the inference requests.
ShadowModelVariants (list) -- [REQUIRED]
List of shadow variant configurations.
(dict) --
The name and sampling percentage of a shadow variant.
ShadowModelVariantName (string) -- [REQUIRED]
The name of the shadow variant.
SamplingPercentage (integer) -- [REQUIRED]
The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN of the updated inference experiment.
{'AdditionalInferenceSpecificationsToAdd': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}, 'InferenceSpecification': {'SupportedTransformInstanceTypes': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge'}}}
Updates a versioned model.
See also: AWS API Documentation
Request Syntax
client.update_model_package( ModelPackageArn='string', ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval', ApprovalDescription='string', CustomerMetadataProperties={ 'string': 'string' }, CustomerMetadataPropertiesToRemove=[ 'string', ], AdditionalInferenceSpecificationsToAdd=[ { 'Name': 'string', 'Description': 'string', 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, ], InferenceSpecification={ 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ModelDataSource': { 'S3DataSource': { 'S3Uri': 'string', 'S3DataType': 'S3Prefix'|'S3Object', 'CompressionType': 'None'|'Gzip', 'ModelAccessConfig': { 'AcceptEula': True|False }, 'HubAccessConfig': { 'HubContentArn': 'string' }, 'ManifestS3Uri': 'string' } }, 'ProductId': 'string', 'Environment': { 'string': 'string' }, 'ModelInput': { 'DataInputConfig': 'string' }, 'Framework': 'string', 'FrameworkVersion': 'string', 'NearestModelName': 'string', 'AdditionalS3DataSource': { 'S3DataType': 'S3Object'|'S3Prefix', 'S3Uri': 'string', 'CompressionType': 'None'|'Gzip' } }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.dl1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, SourceUri='string', ModelCard={ 'ModelCardContent': 'string', 'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived' }, ModelLifeCycle={ 'Stage': 'string', 'StageStatus': 'string', 'StageDescription': 'string' }, ClientToken='string' )
string
[REQUIRED]
The Amazon Resource Name (ARN) of the model package.
string
The approval status of the model.
string
A description for the approval status of the model.
dict
The metadata properties associated with the model package versions.
(string) --
(string) --
list
The metadata properties associated with the model package versions to remove.
(string) --
list
An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
(dict) --
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
Name (string) -- [REQUIRED]
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.
Description (string) --
A description of the additional Inference specification
Containers (list) -- [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) -- [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) -- [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) -- [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) -- [REQUIRED]
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) -- [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) -- [REQUIRED]
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) -- [REQUIRED]
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) -- [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) -- [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
dict
Specifies details about inference jobs that you can run with models based on this model package, including the following information:
The Amazon ECR paths of containers that contain the inference code and model artifacts.
The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
The input and output content formats that the model package supports for inference.
Containers (list) -- [REQUIRED]
The Amazon ECR registry path of the Docker image that contains the inference code.
(dict) --
Describes the Docker container for the model package.
ContainerHostname (string) --
The DNS host name for the Docker container.
Image (string) -- [REQUIRED]
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
ImageDigest (string) --
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl (string) --
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).
ModelDataSource (dict) --
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource (dict) --
Specifies the S3 location of ML model data to deploy.
S3Uri (string) -- [REQUIRED]
Specifies the S3 path of ML model data to deploy.
S3DataType (string) -- [REQUIRED]
Specifies the type of ML model data to deploy.
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).
If you choose S3Object, S3Uri identifies an object that is the ML model data to deploy.
CompressionType (string) -- [REQUIRED]
Specifies how the ML model data is prepared.
If you choose Gzip and choose S3Object as the value of S3DataType, S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.
If you choose None and chooose S3Object as the value of S3DataType, S3Uri identifies an object that represents an uncompressed ML model to deploy.
If you choose None and choose S3Prefix as the value of S3DataType, S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.
If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
If you choose S3Object as the value of S3DataType, then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.
If you choose S3Prefix as the value of S3DataType, then for each S3 object under the key name pefix referenced by S3Uri, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.
Do not use any of the following as file names or directory names:
An empty or blank string
A string which contains null bytes
A string longer than 255 bytes
A single dot ( .)
A double dot ( ..)
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType, then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig (dict) --
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
AcceptEula (boolean) -- [REQUIRED]
Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
HubAccessConfig (dict) --
Configuration information for hub access.
HubContentArn (string) -- [REQUIRED]
The ARN of the hub content for which deployment access is allowed.
ManifestS3Uri (string) --
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
ProductId (string) --
The Amazon Web Services Marketplace product ID of the model package.
Environment (dict) --
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
(string) --
(string) --
ModelInput (dict) --
A structure with Model Input details.
DataInputConfig (string) -- [REQUIRED]
The input configuration object for the model.
Framework (string) --
The machine learning framework of the model package container image.
FrameworkVersion (string) --
The framework version of the Model Package Container Image.
NearestModelName (string) --
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
AdditionalS3DataSource (dict) --
The additional data source that is used during inference in the Docker container for your model package.
S3DataType (string) -- [REQUIRED]
The data type of the additional data source that you specify for use in inference or training.
S3Uri (string) -- [REQUIRED]
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
CompressionType (string) --
The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
SupportedTransformInstanceTypes (list) --
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedRealtimeInferenceInstanceTypes (list) --
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string) --
SupportedContentTypes (list) --
The supported MIME types for the input data.
(string) --
SupportedResponseMIMETypes (list) --
The supported MIME types for the output data.
(string) --
string
The URI of the source for the model package.
dict
The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model package model card schema, see Model package model card schema. For more information about the model card associated with the model package, see View the Details of a Model Version.
ModelCardContent (string) --
The content of the model card. The content must follow the schema described in Model Package Model Card Schema.
ModelCardStatus (string) --
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft: The model card is a work in progress.
PendingReview: The model card is pending review.
Approved: The model card is approved.
Archived: The model card is archived. No more updates can be made to the model card content. If you try to update the model card content, you will receive the message Model Card is in Archived state.
dict
A structure describing the current state of the model in its life cycle.
Stage (string) -- [REQUIRED]
The current stage in the model life cycle.
StageStatus (string) -- [REQUIRED]
The current status of a stage in model life cycle.
StageDescription (string) --
Describes the stage related details.
string
A unique token that guarantees that the call to this API is idempotent.
dict
Response Syntax
{ 'ModelPackageArn': 'string' }
Response Structure
(dict) --
ModelPackageArn (string) --
The Amazon Resource Name (ARN) of the model.
{'InstanceType': {'ml.inf2.24xlarge', 'ml.inf2.48xlarge', 'ml.inf2.8xlarge', 'ml.inf2.xlarge', 'ml.trn1.2xlarge', 'ml.trn1.32xlarge', 'ml.trn1n.32xlarge'}}
Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
See also: AWS API Documentation
Request Syntax
client.update_notebook_instance( NotebookInstanceName='string', InstanceType='ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p4d.24xlarge'|'ml.p4de.24xlarge'|'ml.p5.48xlarge'|'ml.m6i.large'|'ml.m6i.xlarge'|'ml.m6i.2xlarge'|'ml.m6i.4xlarge'|'ml.m6i.8xlarge'|'ml.m6i.12xlarge'|'ml.m6i.16xlarge'|'ml.m6i.24xlarge'|'ml.m6i.32xlarge'|'ml.m7i.large'|'ml.m7i.xlarge'|'ml.m7i.2xlarge'|'ml.m7i.4xlarge'|'ml.m7i.8xlarge'|'ml.m7i.12xlarge'|'ml.m7i.16xlarge'|'ml.m7i.24xlarge'|'ml.m7i.48xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.c7i.large'|'ml.c7i.xlarge'|'ml.c7i.2xlarge'|'ml.c7i.4xlarge'|'ml.c7i.8xlarge'|'ml.c7i.12xlarge'|'ml.c7i.16xlarge'|'ml.c7i.24xlarge'|'ml.c7i.48xlarge'|'ml.r6i.large'|'ml.r6i.xlarge'|'ml.r6i.2xlarge'|'ml.r6i.4xlarge'|'ml.r6i.8xlarge'|'ml.r6i.12xlarge'|'ml.r6i.16xlarge'|'ml.r6i.24xlarge'|'ml.r6i.32xlarge'|'ml.r7i.large'|'ml.r7i.xlarge'|'ml.r7i.2xlarge'|'ml.r7i.4xlarge'|'ml.r7i.8xlarge'|'ml.r7i.12xlarge'|'ml.r7i.16xlarge'|'ml.r7i.24xlarge'|'ml.r7i.48xlarge'|'ml.m6id.large'|'ml.m6id.xlarge'|'ml.m6id.2xlarge'|'ml.m6id.4xlarge'|'ml.m6id.8xlarge'|'ml.m6id.12xlarge'|'ml.m6id.16xlarge'|'ml.m6id.24xlarge'|'ml.m6id.32xlarge'|'ml.c6id.large'|'ml.c6id.xlarge'|'ml.c6id.2xlarge'|'ml.c6id.4xlarge'|'ml.c6id.8xlarge'|'ml.c6id.12xlarge'|'ml.c6id.16xlarge'|'ml.c6id.24xlarge'|'ml.c6id.32xlarge'|'ml.r6id.large'|'ml.r6id.xlarge'|'ml.r6id.2xlarge'|'ml.r6id.4xlarge'|'ml.r6id.8xlarge'|'ml.r6id.12xlarge'|'ml.r6id.16xlarge'|'ml.r6id.24xlarge'|'ml.r6id.32xlarge'|'ml.g6.xlarge'|'ml.g6.2xlarge'|'ml.g6.4xlarge'|'ml.g6.8xlarge'|'ml.g6.12xlarge'|'ml.g6.16xlarge'|'ml.g6.24xlarge'|'ml.g6.48xlarge', RoleArn='string', LifecycleConfigName='string', DisassociateLifecycleConfig=True|False, VolumeSizeInGB=123, DefaultCodeRepository='string', AdditionalCodeRepositories=[ 'string', ], AcceleratorTypes=[ 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', ], DisassociateAcceleratorTypes=True|False, DisassociateDefaultCodeRepository=True|False, DisassociateAdditionalCodeRepositories=True|False, RootAccess='Enabled'|'Disabled', InstanceMetadataServiceConfiguration={ 'MinimumInstanceMetadataServiceVersion': 'string' } )
string
[REQUIRED]
The name of the notebook instance to update.
string
The Amazon ML compute instance type.
string
The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access the notebook instance. For more information, see SageMaker Roles.
string
The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
boolean
Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
integer
The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
string
The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
list
An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
(string) --
list
This parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of the EI instance types to associate with this notebook instance.
(string) --
boolean
This parameter is no longer supported. Elastic Inference (EI) is no longer available.
This parameter was used to specify a list of the EI instance types to remove from this notebook instance.
boolean
The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
boolean
A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
string
Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.
dict
Information on the IMDS configuration of the notebook instance
MinimumInstanceMetadataServiceVersion (string) -- [REQUIRED]
Indicates the minimum IMDS version that the notebook instance supports. When passed as part of CreateNotebookInstance, if no value is selected, then it defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If passed as part of UpdateNotebookInstance, there is no default.
dict
Response Syntax
{}
Response Structure
(dict) --