2021/08/18 - Amazon SageMaker Service - 7 updated api methods
Changes Amazon SageMaker now supports Asynchronous Inference endpoints. Adds PlatformIdentifier field that allows Notebook Instance creation with different platform selections. Increases the maximum number of containers in multi-container endpoints to 15. Adds more instance types to InstanceType field.
{'AsyncInferenceConfig': {'ClientConfig': {'MaxConcurrentInvocationsPerInstance': 'integer'}, 'OutputConfig': {'KmsKeyId': 'string', 'NotificationConfig': {'ErrorTopic': 'string', 'SuccessTopic': 'string'}, 'S3OutputPath': 'string'}}}
Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.
In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.
If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.
For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (Amazon Web Services SDK for Python (Boto 3)).
See also: AWS API Documentation
Request Syntax
client.create_endpoint_config( EndpointConfigName='string', ProductionVariants=[ { 'VariantName': 'string', 'ModelName': 'string', 'InitialInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge', 'InitialVariantWeight': ..., 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'CoreDumpConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' } }, ], DataCaptureConfig={ 'EnableCapture': True|False, 'InitialSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'CaptureOptions': [ { 'CaptureMode': 'Input'|'Output' }, ], 'CaptureContentTypeHeader': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], KmsKeyId='string', AsyncInferenceConfig={ 'ClientConfig': { 'MaxConcurrentInvocationsPerInstance': 123 }, 'OutputConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'NotificationConfig': { 'SuccessTopic': 'string', 'ErrorTopic': 'string' } } } )
string
[REQUIRED]
The name of the endpoint configuration. You specify this name in a CreateEndpoint request.
list
[REQUIRED]
An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
(dict) --
Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights.
VariantName (string) -- [REQUIRED]
The name of the production variant.
ModelName (string) -- [REQUIRED]
The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount (integer) -- [REQUIRED]
Number of instances to launch initially.
InstanceType (string) -- [REQUIRED]
The ML compute instance type.
InitialVariantWeight (float) --
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
CoreDumpConfig (dict) --
Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri (string) -- [REQUIRED]
The Amazon S3 bucket to send the core dump to.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
dict
EnableCapture (boolean) --
InitialSamplingPercentage (integer) -- [REQUIRED]
DestinationS3Uri (string) -- [REQUIRED]
KmsKeyId (string) --
CaptureOptions (list) -- [REQUIRED]
(dict) --
CaptureMode (string) -- [REQUIRED]
CaptureContentTypeHeader (dict) --
CsvContentTypes (list) --
(string) --
JsonContentTypes (list) --
(string) --
list
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for Amazon SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to Amazon SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
string
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint, UpdateEndpoint requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMS
dict
Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
ClientConfig (dict) --
Configures the behavior of the client used by Amazon SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance (integer) --
The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, Amazon SageMaker will choose an optimal value for you.
OutputConfig (dict) -- [REQUIRED]
Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 location to upload inference responses to.
NotificationConfig (dict) --
Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic (string) --
Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic (string) --
Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
dict
Response Syntax
{ 'EndpointConfigArn': 'string' }
Response Structure
(dict) --
EndpointConfigArn (string) --
The Amazon Resource Name (ARN) of the endpoint configuration.
{'InstanceType': {'ml.g4dn.12xlarge', 'ml.g4dn.16xlarge', 'ml.g4dn.2xlarge', 'ml.g4dn.4xlarge', 'ml.g4dn.8xlarge', 'ml.g4dn.xlarge', 'ml.m5d.12xlarge', 'ml.m5d.16xlarge', 'ml.m5d.24xlarge', 'ml.m5d.2xlarge', 'ml.m5d.4xlarge', 'ml.m5d.8xlarge', 'ml.m5d.large', 'ml.m5d.xlarge', 'ml.p3dn.24xlarge', 'ml.r5.12xlarge', 'ml.r5.16xlarge', 'ml.r5.24xlarge', 'ml.r5.2xlarge', 'ml.r5.4xlarge', 'ml.r5.8xlarge', 'ml.r5.large', 'ml.r5.xlarge'}, 'PlatformIdentifier': 'string'}
Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.
In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.
Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.
After receiving the request, Amazon SageMaker does the following:
Creates a network interface in the Amazon SageMaker VPC.
(Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.
Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.
After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.
After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.
For more information, see How It Works.
See also: AWS API Documentation
Request Syntax
client.create_notebook_instance( NotebookInstanceName='string', InstanceType='ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', SubnetId='string', SecurityGroupIds=[ 'string', ], RoleArn='string', KmsKeyId='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], LifecycleConfigName='string', DirectInternetAccess='Enabled'|'Disabled', VolumeSizeInGB=123, AcceleratorTypes=[ 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', ], DefaultCodeRepository='string', AdditionalCodeRepositories=[ 'string', ], RootAccess='Enabled'|'Disabled', PlatformIdentifier='string' )
string
[REQUIRED]
The name of the new notebook instance.
string
[REQUIRED]
The type of ML compute instance to launch for the notebook instance.
string
The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
list
The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
(string) --
string
[REQUIRED]
When you send any requests to Amazon Web Services resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see Amazon SageMaker Roles.
string
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
list
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for Amazon SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to Amazon SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
string
The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
string
Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance is able to access resources only in your VPC, and is not be able to connect to Amazon SageMaker training and endpoint services unless you configure a NAT Gateway in your VPC.
For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
integer
The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
list
A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
(string) --
string
A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
list
An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
(string) --
string
Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.
string
The platform identifier of the notebook instance runtime environment.
dict
Response Syntax
{ 'NotebookInstanceArn': 'string' }
Response Structure
(dict) --
NotebookInstanceArn (string) --
The Amazon Resource Name (ARN) of the notebook instance.
{'AsyncInferenceConfig': {'ClientConfig': {'MaxConcurrentInvocationsPerInstance': 'integer'}, 'OutputConfig': {'KmsKeyId': 'string', 'NotificationConfig': {'ErrorTopic': 'string', 'SuccessTopic': 'string'}, 'S3OutputPath': 'string'}}}
Returns the description of an endpoint.
See also: AWS API Documentation
Request Syntax
client.describe_endpoint( EndpointName='string' )
string
[REQUIRED]
The name of the endpoint.
dict
Response Syntax
{ 'EndpointName': 'string', 'EndpointArn': 'string', 'EndpointConfigName': 'string', 'ProductionVariants': [ { 'VariantName': 'string', 'DeployedImages': [ { 'SpecifiedImage': 'string', 'ResolvedImage': 'string', 'ResolutionTime': datetime(2015, 1, 1) }, ], 'CurrentWeight': ..., 'DesiredWeight': ..., 'CurrentInstanceCount': 123, 'DesiredInstanceCount': 123 }, ], 'DataCaptureConfig': { 'EnableCapture': True|False, 'CaptureStatus': 'Started'|'Stopped', 'CurrentSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed', 'FailureReason': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'LastDeploymentConfig': { 'BlueGreenUpdatePolicy': { 'TrafficRoutingConfiguration': { 'Type': 'ALL_AT_ONCE'|'CANARY', 'WaitIntervalInSeconds': 123, 'CanarySize': { 'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT', 'Value': 123 } }, 'TerminationWaitInSeconds': 123, 'MaximumExecutionTimeoutInSeconds': 123 }, 'AutoRollbackConfiguration': { 'Alarms': [ { 'AlarmName': 'string' }, ] } }, 'AsyncInferenceConfig': { 'ClientConfig': { 'MaxConcurrentInvocationsPerInstance': 123 }, 'OutputConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'NotificationConfig': { 'SuccessTopic': 'string', 'ErrorTopic': 'string' } } } }
Response Structure
(dict) --
EndpointName (string) --
Name of the endpoint.
EndpointArn (string) --
The Amazon Resource Name (ARN) of the endpoint.
EndpointConfigName (string) --
The name of the endpoint configuration associated with this endpoint.
ProductionVariants (list) --
An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
(dict) --
Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating, you get different desired and current values.
VariantName (string) --
The name of the variant.
DeployedImages (list) --
An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.
(dict) --
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.
If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant, the path resolves to a path of the form registry/repository[@digest]. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide.
SpecifiedImage (string) --
The image path you specified when you created the model.
ResolvedImage (string) --
The specific digest path of the image hosted in this ProductionVariant.
ResolutionTime (datetime) --
The date and time when the image path for the model resolved to the ResolvedImage
CurrentWeight (float) --
The weight associated with the variant.
DesiredWeight (float) --
The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.
CurrentInstanceCount (integer) --
The number of instances associated with the variant.
DesiredInstanceCount (integer) --
The number of instances requested in the UpdateEndpointWeightsAndCapacities request.
DataCaptureConfig (dict) --
EnableCapture (boolean) --
CaptureStatus (string) --
CurrentSamplingPercentage (integer) --
DestinationS3Uri (string) --
KmsKeyId (string) --
EndpointStatus (string) --
The status of the endpoint.
OutOfService: Endpoint is not available to take incoming requests.
Creating: CreateEndpoint is executing.
Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.
SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.
RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.
InService: Endpoint is available to process incoming requests.
Deleting: DeleteEndpoint is executing.
Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
FailureReason (string) --
If the status of the endpoint is Failed, the reason why it failed.
CreationTime (datetime) --
A timestamp that shows when the endpoint was created.
LastModifiedTime (datetime) --
A timestamp that shows when the endpoint was last modified.
LastDeploymentConfig (dict) --
The most recent deployment configuration for the endpoint.
BlueGreenUpdatePolicy (dict) --
TrafficRoutingConfiguration (dict) --
Type (string) --
WaitIntervalInSeconds (integer) --
CanarySize (dict) --
Type (string) --
This API is not supported.
Value (integer) --
TerminationWaitInSeconds (integer) --
MaximumExecutionTimeoutInSeconds (integer) --
AutoRollbackConfiguration (dict) --
Alarms (list) --
(dict) --
This API is not supported.
AlarmName (string) --
AsyncInferenceConfig (dict) --
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
ClientConfig (dict) --
Configures the behavior of the client used by Amazon SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance (integer) --
The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, Amazon SageMaker will choose an optimal value for you.
OutputConfig (dict) --
Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath (string) --
The Amazon S3 location to upload inference responses to.
NotificationConfig (dict) --
Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic (string) --
Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic (string) --
Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
{'AsyncInferenceConfig': {'ClientConfig': {'MaxConcurrentInvocationsPerInstance': 'integer'}, 'OutputConfig': {'KmsKeyId': 'string', 'NotificationConfig': {'ErrorTopic': 'string', 'SuccessTopic': 'string'}, 'S3OutputPath': 'string'}}}
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
See also: AWS API Documentation
Request Syntax
client.describe_endpoint_config( EndpointConfigName='string' )
string
[REQUIRED]
The name of the endpoint configuration.
dict
Response Syntax
{ 'EndpointConfigName': 'string', 'EndpointConfigArn': 'string', 'ProductionVariants': [ { 'VariantName': 'string', 'ModelName': 'string', 'InitialInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge', 'InitialVariantWeight': ..., 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'CoreDumpConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' } }, ], 'DataCaptureConfig': { 'EnableCapture': True|False, 'InitialSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'CaptureOptions': [ { 'CaptureMode': 'Input'|'Output' }, ], 'CaptureContentTypeHeader': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, 'KmsKeyId': 'string', 'CreationTime': datetime(2015, 1, 1), 'AsyncInferenceConfig': { 'ClientConfig': { 'MaxConcurrentInvocationsPerInstance': 123 }, 'OutputConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'NotificationConfig': { 'SuccessTopic': 'string', 'ErrorTopic': 'string' } } } }
Response Structure
(dict) --
EndpointConfigName (string) --
Name of the Amazon SageMaker endpoint configuration.
EndpointConfigArn (string) --
The Amazon Resource Name (ARN) of the endpoint configuration.
ProductionVariants (list) --
An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
(dict) --
Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights.
VariantName (string) --
The name of the production variant.
ModelName (string) --
The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount (integer) --
Number of instances to launch initially.
InstanceType (string) --
The ML compute instance type.
InitialVariantWeight (float) --
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
CoreDumpConfig (dict) --
Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri (string) --
The Amazon S3 bucket to send the core dump to.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
DataCaptureConfig (dict) --
EnableCapture (boolean) --
InitialSamplingPercentage (integer) --
DestinationS3Uri (string) --
KmsKeyId (string) --
CaptureOptions (list) --
(dict) --
CaptureMode (string) --
CaptureContentTypeHeader (dict) --
CsvContentTypes (list) --
(string) --
JsonContentTypes (list) --
(string) --
KmsKeyId (string) --
Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
CreationTime (datetime) --
A timestamp that shows when the endpoint configuration was created.
AsyncInferenceConfig (dict) --
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
ClientConfig (dict) --
Configures the behavior of the client used by Amazon SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance (integer) --
The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, Amazon SageMaker will choose an optimal value for you.
OutputConfig (dict) --
Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath (string) --
The Amazon S3 location to upload inference responses to.
NotificationConfig (dict) --
Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic (string) --
Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic (string) --
Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
{'InstanceType': {'ml.g4dn.12xlarge', 'ml.g4dn.16xlarge', 'ml.g4dn.2xlarge', 'ml.g4dn.4xlarge', 'ml.g4dn.8xlarge', 'ml.g4dn.xlarge', 'ml.m5d.12xlarge', 'ml.m5d.16xlarge', 'ml.m5d.24xlarge', 'ml.m5d.2xlarge', 'ml.m5d.4xlarge', 'ml.m5d.8xlarge', 'ml.m5d.large', 'ml.m5d.xlarge', 'ml.p3dn.24xlarge', 'ml.r5.12xlarge', 'ml.r5.16xlarge', 'ml.r5.24xlarge', 'ml.r5.2xlarge', 'ml.r5.4xlarge', 'ml.r5.8xlarge', 'ml.r5.large', 'ml.r5.xlarge'}, 'PlatformIdentifier': 'string'}
Returns information about a notebook instance.
See also: AWS API Documentation
Request Syntax
client.describe_notebook_instance( NotebookInstanceName='string' )
string
[REQUIRED]
The name of the notebook instance that you want information about.
dict
Response Syntax
{ 'NotebookInstanceArn': 'string', 'NotebookInstanceName': 'string', 'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating', 'FailureReason': 'string', 'Url': 'string', 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'SubnetId': 'string', 'SecurityGroups': [ 'string', ], 'RoleArn': 'string', 'KmsKeyId': 'string', 'NetworkInterfaceId': 'string', 'LastModifiedTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'NotebookInstanceLifecycleConfigName': 'string', 'DirectInternetAccess': 'Enabled'|'Disabled', 'VolumeSizeInGB': 123, 'AcceleratorTypes': [ 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', ], 'DefaultCodeRepository': 'string', 'AdditionalCodeRepositories': [ 'string', ], 'RootAccess': 'Enabled'|'Disabled', 'PlatformIdentifier': 'string' }
Response Structure
(dict) --
NotebookInstanceArn (string) --
The Amazon Resource Name (ARN) of the notebook instance.
NotebookInstanceName (string) --
The name of the Amazon SageMaker notebook instance.
NotebookInstanceStatus (string) --
The status of the notebook instance.
FailureReason (string) --
If status is Failed, the reason it failed.
Url (string) --
The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
InstanceType (string) --
The type of ML compute instance running on the notebook instance.
SubnetId (string) --
The ID of the VPC subnet.
SecurityGroups (list) --
The IDs of the VPC security groups.
(string) --
RoleArn (string) --
The Amazon Resource Name (ARN) of the IAM role associated with the instance.
KmsKeyId (string) --
The Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
NetworkInterfaceId (string) --
The network interface IDs that Amazon SageMaker created at the time of creating the instance.
LastModifiedTime (datetime) --
A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
CreationTime (datetime) --
A timestamp. Use this parameter to return the time when the notebook instance was created
NotebookInstanceLifecycleConfigName (string) --
Returns the name of a notebook instance lifecycle configuration.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
DirectInternetAccess (string) --
Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services.
For more information, see Notebook Instances Are Internet-Enabled by Default.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the notebook instance.
AcceleratorTypes (list) --
A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
(string) --
DefaultCodeRepository (string) --
The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
AdditionalCodeRepositories (list) --
An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
(string) --
RootAccess (string) --
Whether root access is enabled or disabled for users of the notebook instance.
PlatformIdentifier (string) --
The platform identifier of the notebook instance runtime environment.
{'NotebookInstances': {'InstanceType': {'ml.g4dn.12xlarge', 'ml.g4dn.16xlarge', 'ml.g4dn.2xlarge', 'ml.g4dn.4xlarge', 'ml.g4dn.8xlarge', 'ml.g4dn.xlarge', 'ml.m5d.12xlarge', 'ml.m5d.16xlarge', 'ml.m5d.24xlarge', 'ml.m5d.2xlarge', 'ml.m5d.4xlarge', 'ml.m5d.8xlarge', 'ml.m5d.large', 'ml.m5d.xlarge', 'ml.p3dn.24xlarge', 'ml.r5.12xlarge', 'ml.r5.16xlarge', 'ml.r5.24xlarge', 'ml.r5.2xlarge', 'ml.r5.4xlarge', 'ml.r5.8xlarge', 'ml.r5.large', 'ml.r5.xlarge'}}}
Returns a list of the Amazon SageMaker notebook instances in the requester's account in an Amazon Web Services Region.
See also: AWS API Documentation
Request Syntax
client.list_notebook_instances( NextToken='string', MaxResults=123, SortBy='Name'|'CreationTime'|'Status', SortOrder='Ascending'|'Descending', NameContains='string', CreationTimeBefore=datetime(2015, 1, 1), CreationTimeAfter=datetime(2015, 1, 1), LastModifiedTimeBefore=datetime(2015, 1, 1), LastModifiedTimeAfter=datetime(2015, 1, 1), StatusEquals='Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating', NotebookInstanceLifecycleConfigNameContains='string', DefaultCodeRepositoryContains='string', AdditionalCodeRepositoryEquals='string' )
string
If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances.
integer
The maximum number of notebook instances to return.
string
The field to sort results by. The default is Name.
string
The sort order for results.
string
A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
datetime
A filter that returns only notebook instances that were created before the specified time (timestamp).
datetime
A filter that returns only notebook instances that were created after the specified time (timestamp).
datetime
A filter that returns only notebook instances that were modified before the specified time (timestamp).
datetime
A filter that returns only notebook instances that were modified after the specified time (timestamp).
string
A filter that returns only notebook instances with the specified status.
string
A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
string
A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
string
A filter that returns only notebook instances with associated with the specified git repository.
dict
Response Syntax
{ 'NextToken': 'string', 'NotebookInstances': [ { 'NotebookInstanceName': 'string', 'NotebookInstanceArn': 'string', 'NotebookInstanceStatus': 'Pending'|'InService'|'Stopping'|'Stopped'|'Failed'|'Deleting'|'Updating', 'Url': 'string', 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'NotebookInstanceLifecycleConfigName': 'string', 'DefaultCodeRepository': 'string', 'AdditionalCodeRepositories': [ 'string', ] }, ] }
Response Structure
(dict) --
NextToken (string) --
If the response to the previous ListNotebookInstances request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.
NotebookInstances (list) --
An array of NotebookInstanceSummary objects, one for each notebook instance.
(dict) --
Provides summary information for an Amazon SageMaker notebook instance.
NotebookInstanceName (string) --
The name of the notebook instance that you want a summary for.
NotebookInstanceArn (string) --
The Amazon Resource Name (ARN) of the notebook instance.
NotebookInstanceStatus (string) --
The status of the notebook instance.
Url (string) --
The URL that you use to connect to the Jupyter instance running in your notebook instance.
InstanceType (string) --
The type of ML compute instance that the notebook instance is running on.
CreationTime (datetime) --
A timestamp that shows when the notebook instance was created.
LastModifiedTime (datetime) --
A timestamp that shows when the notebook instance was last modified.
NotebookInstanceLifecycleConfigName (string) --
The name of a notebook instance lifecycle configuration associated with this notebook instance.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
DefaultCodeRepository (string) --
The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
AdditionalCodeRepositories (list) --
An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
(string) --
{'InstanceType': {'ml.g4dn.12xlarge', 'ml.g4dn.16xlarge', 'ml.g4dn.2xlarge', 'ml.g4dn.4xlarge', 'ml.g4dn.8xlarge', 'ml.g4dn.xlarge', 'ml.m5d.12xlarge', 'ml.m5d.16xlarge', 'ml.m5d.24xlarge', 'ml.m5d.2xlarge', 'ml.m5d.4xlarge', 'ml.m5d.8xlarge', 'ml.m5d.large', 'ml.m5d.xlarge', 'ml.p3dn.24xlarge', 'ml.r5.12xlarge', 'ml.r5.16xlarge', 'ml.r5.24xlarge', 'ml.r5.2xlarge', 'ml.r5.4xlarge', 'ml.r5.8xlarge', 'ml.r5.large', 'ml.r5.xlarge'}}
Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
See also: AWS API Documentation
Request Syntax
client.update_notebook_instance( NotebookInstanceName='string', InstanceType='ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', RoleArn='string', LifecycleConfigName='string', DisassociateLifecycleConfig=True|False, VolumeSizeInGB=123, DefaultCodeRepository='string', AdditionalCodeRepositories=[ 'string', ], AcceleratorTypes=[ 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', ], DisassociateAcceleratorTypes=True|False, DisassociateDefaultCodeRepository=True|False, DisassociateAdditionalCodeRepositories=True|False, RootAccess='Enabled'|'Disabled' )
string
[REQUIRED]
The name of the notebook instance to update.
string
The Amazon ML compute instance type.
string
The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see Amazon SageMaker Roles.
string
The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
boolean
Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
integer
The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
string
The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
list
An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
(string) --
list
A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
(string) --
boolean
A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.
boolean
The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
boolean
A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
string
Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.
dict
Response Syntax
{}
Response Structure
(dict) --