Amazon SageMaker Service

2023/10/03 - Amazon SageMaker Service - 14 updated api methods

Changes  This release allows users to run Selective Execution in SageMaker Pipelines without SourcePipelineExecutionArn if selected steps do not have any dependent steps.

BatchDescribeModelPackage (updated) Link ¶
Changes (response)
{'ModelPackageSummaries': {'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}}}}

This action batch describes a list of versioned model packages

See also: AWS API Documentation

Request Syntax

client.batch_describe_model_package(
    ModelPackageArnList=[
        'string',
    ]
)
type ModelPackageArnList

list

param ModelPackageArnList

[REQUIRED]

The list of Amazon Resource Name (ARN) of the model package groups.

  • (string) --

rtype

dict

returns

Response Syntax

{
    'ModelPackageSummaries': {
        'string': {
            'ModelPackageGroupName': 'string',
            'ModelPackageVersion': 123,
            'ModelPackageArn': 'string',
            'ModelPackageDescription': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'InferenceSpecification': {
                'Containers': [
                    {
                        'ContainerHostname': 'string',
                        'Image': 'string',
                        'ImageDigest': 'string',
                        'ModelDataUrl': 'string',
                        'ProductId': 'string',
                        'Environment': {
                            'string': 'string'
                        },
                        'ModelInput': {
                            'DataInputConfig': 'string'
                        },
                        'Framework': 'string',
                        'FrameworkVersion': 'string',
                        'NearestModelName': 'string'
                    },
                ],
                'SupportedTransformInstanceTypes': [
                    'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                ],
                'SupportedRealtimeInferenceInstanceTypes': [
                    'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                ],
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedResponseMIMETypes': [
                    'string',
                ]
            },
            'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
            'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval'
        }
    },
    'BatchDescribeModelPackageErrorMap': {
        'string': {
            'ErrorCode': 'string',
            'ErrorResponse': 'string'
        }
    }
}

Response Structure

  • (dict) --

    • ModelPackageSummaries (dict) --

      The summaries for the model package versions

      • (string) --

        • (dict) --

          Provides summary information about the model package.

          • ModelPackageGroupName (string) --

            The group name for the model package

          • ModelPackageVersion (integer) --

            The version number of a versioned model.

          • ModelPackageArn (string) --

            The Amazon Resource Name (ARN) of the model package.

          • ModelPackageDescription (string) --

            The description of the model package.

          • CreationTime (datetime) --

            The creation time of the mortgage package summary.

          • InferenceSpecification (dict) --

            Defines how to perform inference generation after a training job is run.

            • Containers (list) --

              The Amazon ECR registry path of the Docker image that contains the inference code.

              • (dict) --

                Describes the Docker container for the model package.

                • ContainerHostname (string) --

                  The DNS host name for the Docker container.

                • Image (string) --

                  The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

                  If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

                • ImageDigest (string) --

                  An MD5 hash of the training algorithm that identifies the Docker image used for training.

                • ModelDataUrl (string) --

                  The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

                  Note

                  The model artifacts must be in an S3 bucket that is in the same region as the model package.

                • ProductId (string) --

                  The Amazon Web Services Marketplace product ID of the model package.

                • Environment (dict) --

                  The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

                  • (string) --

                    • (string) --

                • ModelInput (dict) --

                  A structure with Model Input details.

                  • DataInputConfig (string) --

                    The input configuration object for the model.

                • Framework (string) --

                  The machine learning framework of the model package container image.

                • FrameworkVersion (string) --

                  The framework version of the Model Package Container Image.

                • NearestModelName (string) --

                  The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

            • SupportedTransformInstanceTypes (list) --

              A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

              This parameter is required for unversioned models, and optional for versioned models.

              • (string) --

            • SupportedRealtimeInferenceInstanceTypes (list) --

              A list of the instance types that are used to generate inferences in real-time.

              This parameter is required for unversioned models, and optional for versioned models.

              • (string) --

            • SupportedContentTypes (list) --

              The supported MIME types for the input data.

              • (string) --

            • SupportedResponseMIMETypes (list) --

              The supported MIME types for the output data.

              • (string) --

          • ModelPackageStatus (string) --

            The status of the mortgage package.

          • ModelApprovalStatus (string) --

            The approval status of the model.

    • BatchDescribeModelPackageErrorMap (dict) --

      A map of the resource and BatchDescribeModelPackageError objects reporting the error associated with describing the model package.

      • (string) --

        • (dict) --

          The error code and error description associated with the resource.

          • ErrorCode (string) --

          • ErrorResponse (string) --

CreateAlgorithm (updated) Link ¶
Changes (request)
{'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}}}

Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.

See also: AWS API Documentation

Request Syntax

client.create_algorithm(
    AlgorithmName='string',
    AlgorithmDescription='string',
    TrainingSpecification={
        'TrainingImage': 'string',
        'TrainingImageDigest': 'string',
        'SupportedHyperParameters': [
            {
                'Name': 'string',
                'Description': 'string',
                'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText',
                'Range': {
                    'IntegerParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'ContinuousParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'CategoricalParameterRangeSpecification': {
                        'Values': [
                            'string',
                        ]
                    }
                },
                'IsTunable': True|False,
                'IsRequired': True|False,
                'DefaultValue': 'string'
            },
        ],
        'SupportedTrainingInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.p5.48xlarge',
        ],
        'SupportsDistributedTraining': True|False,
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'TrainingChannels': [
            {
                'Name': 'string',
                'Description': 'string',
                'IsRequired': True|False,
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedCompressionTypes': [
                    'None'|'Gzip',
                ],
                'SupportedInputModes': [
                    'Pipe'|'File'|'FastFile',
                ]
            },
        ],
        'SupportedTuningJobObjectiveMetrics': [
            {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
        ]
    },
    InferenceSpecification={
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    ValidationSpecification={
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TrainingJobDefinition': {
                    'TrainingInputMode': 'Pipe'|'File'|'FastFile',
                    'HyperParameters': {
                        'string': 'string'
                    },
                    'InputDataConfig': [
                        {
                            'ChannelName': 'string',
                            'DataSource': {
                                'S3DataSource': {
                                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                    'S3Uri': 'string',
                                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                                    'AttributeNames': [
                                        'string',
                                    ],
                                    'InstanceGroupNames': [
                                        'string',
                                    ]
                                },
                                'FileSystemDataSource': {
                                    'FileSystemId': 'string',
                                    'FileSystemAccessMode': 'rw'|'ro',
                                    'FileSystemType': 'EFS'|'FSxLustre',
                                    'DirectoryPath': 'string'
                                }
                            },
                            'ContentType': 'string',
                            'CompressionType': 'None'|'Gzip',
                            'RecordWrapperType': 'None'|'RecordIO',
                            'InputMode': 'Pipe'|'File'|'FastFile',
                            'ShuffleConfig': {
                                'Seed': 123
                            }
                        },
                    ],
                    'OutputDataConfig': {
                        'KmsKeyId': 'string',
                        'S3OutputPath': 'string',
                        'CompressionType': 'GZIP'|'NONE'
                    },
                    'ResourceConfig': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.p5.48xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123,
                        'VolumeKmsKeyId': 'string',
                        'InstanceGroups': [
                            {
                                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.p5.48xlarge',
                                'InstanceCount': 123,
                                'InstanceGroupName': 'string'
                            },
                        ],
                        'KeepAlivePeriodInSeconds': 123
                    },
                    'StoppingCondition': {
                        'MaxRuntimeInSeconds': 123,
                        'MaxWaitTimeInSeconds': 123
                    }
                },
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    CertifyForMarketplace=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type AlgorithmName

string

param AlgorithmName

[REQUIRED]

The name of the algorithm.

type AlgorithmDescription

string

param AlgorithmDescription

A description of the algorithm.

type TrainingSpecification

dict

param TrainingSpecification

[REQUIRED]

Specifies details about training jobs run by this algorithm, including the following:

  • The Amazon ECR path of the container and the version digest of the algorithm.

  • The hyperparameters that the algorithm supports.

  • The instance types that the algorithm supports for training.

  • Whether the algorithm supports distributed training.

  • The metrics that the algorithm emits to Amazon CloudWatch.

  • Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.

  • The input channels that the algorithm supports for training data. For example, an algorithm might support train , validation , and test channels.

  • TrainingImage (string) -- [REQUIRED]

    The Amazon ECR registry path of the Docker image that contains the training algorithm.

  • TrainingImageDigest (string) --

    An MD5 hash of the training algorithm that identifies the Docker image used for training.

  • SupportedHyperParameters (list) --

    A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

    • (dict) --

      Defines a hyperparameter to be used by an algorithm.

      • Name (string) -- [REQUIRED]

        The name of this hyperparameter. The name must be unique.

      • Description (string) --

        A brief description of the hyperparameter.

      • Type (string) -- [REQUIRED]

        The type of this hyperparameter. The valid types are Integer , Continuous , Categorical , and FreeText .

      • Range (dict) --

        The allowed range for this hyperparameter.

        • IntegerParameterRangeSpecification (dict) --

          A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

          • MinValue (string) -- [REQUIRED]

            The minimum integer value allowed.

          • MaxValue (string) -- [REQUIRED]

            The maximum integer value allowed.

        • ContinuousParameterRangeSpecification (dict) --

          A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

          • MinValue (string) -- [REQUIRED]

            The minimum floating-point value allowed.

          • MaxValue (string) -- [REQUIRED]

            The maximum floating-point value allowed.

        • CategoricalParameterRangeSpecification (dict) --

          A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

          • Values (list) -- [REQUIRED]

            The allowed categories for the hyperparameter.

            • (string) --

      • IsTunable (boolean) --

        Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

      • IsRequired (boolean) --

        Indicates whether this hyperparameter is required.

      • DefaultValue (string) --

        The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

  • SupportedTrainingInstanceTypes (list) -- [REQUIRED]

    A list of the instance types that this algorithm can use for training.

    • (string) --

  • SupportsDistributedTraining (boolean) --

    Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

  • MetricDefinitions (list) --

    A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

    • (dict) --

      Specifies a metric that the training algorithm writes to stderr or stdout . You can view these logs to understand how your training job performs and check for any errors encountered during training. SageMaker hyperparameter tuning captures all defined metrics. Specify one of the defined metrics to use as an objective metric using the TuningObjective parameter in the HyperParameterTrainingJobDefinition API to evaluate job performance during hyperparameter tuning.

      • Name (string) -- [REQUIRED]

        The name of the metric.

      • Regex (string) -- [REQUIRED]

        A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.

  • TrainingChannels (list) -- [REQUIRED]

    A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

    • (dict) --

      Defines a named input source, called a channel, to be used by an algorithm.

      • Name (string) -- [REQUIRED]

        The name of the channel.

      • Description (string) --

        A brief description of the channel.

      • IsRequired (boolean) --

        Indicates whether the channel is required by the algorithm.

      • SupportedContentTypes (list) -- [REQUIRED]

        The supported MIME types for the data.

        • (string) --

      • SupportedCompressionTypes (list) --

        The allowed compression types, if data compression is used.

        • (string) --

      • SupportedInputModes (list) -- [REQUIRED]

        The allowed input mode, either FILE or PIPE.

        In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

        In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

        • (string) --

          The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

          Pipe mode

          If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

          File mode

          If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

          You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

          For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

          FastFile mode

          If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

          FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

  • SupportedTuningJobObjectiveMetrics (list) --

    A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

    • (dict) --

      Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

      • Type (string) -- [REQUIRED]

        Whether to minimize or maximize the objective metric.

      • MetricName (string) -- [REQUIRED]

        The name of the metric to use for the objective metric.

type InferenceSpecification

dict

param InferenceSpecification

Specifies details about inference jobs that the algorithm runs, including the following:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the algorithm supports for inference.

  • Containers (list) -- [REQUIRED]

    The Amazon ECR registry path of the Docker image that contains the inference code.

    • (dict) --

      Describes the Docker container for the model package.

      • ContainerHostname (string) --

        The DNS host name for the Docker container.

      • Image (string) -- [REQUIRED]

        The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

        If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • ImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • ModelDataUrl (string) --

        The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

        Note

        The model artifacts must be in an S3 bucket that is in the same region as the model package.

      • ProductId (string) --

        The Amazon Web Services Marketplace product ID of the model package.

      • Environment (dict) --

        The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

        • (string) --

          • (string) --

      • ModelInput (dict) --

        A structure with Model Input details.

        • DataInputConfig (string) -- [REQUIRED]

          The input configuration object for the model.

      • Framework (string) --

        The machine learning framework of the model package container image.

      • FrameworkVersion (string) --

        The framework version of the Model Package Container Image.

      • NearestModelName (string) --

        The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

  • SupportedTransformInstanceTypes (list) --

    A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

    This parameter is required for unversioned models, and optional for versioned models.

    • (string) --

  • SupportedRealtimeInferenceInstanceTypes (list) --

    A list of the instance types that are used to generate inferences in real-time.

    This parameter is required for unversioned models, and optional for versioned models.

    • (string) --

  • SupportedContentTypes (list) -- [REQUIRED]

    The supported MIME types for the input data.

    • (string) --

  • SupportedResponseMIMETypes (list) -- [REQUIRED]

    The supported MIME types for the output data.

    • (string) --

type ValidationSpecification

dict

param ValidationSpecification

Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.

  • ValidationRole (string) -- [REQUIRED]

    The IAM roles that SageMaker uses to run the training jobs.

  • ValidationProfiles (list) -- [REQUIRED]

    An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.

    • (dict) --

      Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.

      The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

      • ProfileName (string) -- [REQUIRED]

        The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

      • TrainingJobDefinition (dict) -- [REQUIRED]

        The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.

        • TrainingInputMode (string) -- [REQUIRED]

          The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

          Pipe mode

          If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

          File mode

          If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

          You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

          For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

          FastFile mode

          If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

          FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

        • HyperParameters (dict) --

          The hyperparameters used for the training job.

          • (string) --

            • (string) --

        • InputDataConfig (list) -- [REQUIRED]

          An array of Channel objects, each of which specifies an input source.

          • (dict) --

            A channel is a named input source that training algorithms can consume.

            • ChannelName (string) -- [REQUIRED]

              The name of the channel.

            • DataSource (dict) -- [REQUIRED]

              The location of the channel data.

              • S3DataSource (dict) --

                The S3 location of the data source that is associated with a channel.

                • S3DataType (string) -- [REQUIRED]

                  If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                  If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                  If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                • S3Uri (string) -- [REQUIRED]

                  Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                  • A key name prefix might look like this: s3://bucketname/exampleprefix

                  • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.

                  Your input bucket must be located in same Amazon Web Services region as your training job.

                • S3DataDistributionType (string) --

                  If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                  If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                  Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                  In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                • AttributeNames (list) --

                  A list of one or more attribute names to use that are found in a specified augmented manifest file.

                  • (string) --

                • InstanceGroupNames (list) --

                  A list of names of instance groups that get data from the S3 data source.

                  • (string) --

              • FileSystemDataSource (dict) --

                The file system that is associated with a channel.

                • FileSystemId (string) -- [REQUIRED]

                  The file system id.

                • FileSystemAccessMode (string) -- [REQUIRED]

                  The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                • FileSystemType (string) -- [REQUIRED]

                  The file system type.

                • DirectoryPath (string) -- [REQUIRED]

                  The full path to the directory to associate with the channel.

            • ContentType (string) --

              The MIME type of the data.

            • CompressionType (string) --

              If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

            • RecordWrapperType (string) --

              Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

              In File mode, leave this field unset or set it to None.

            • InputMode (string) --

              (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

              To use a model for incremental training, choose File input model.

            • ShuffleConfig (dict) --

              A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

              For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

              • Seed (integer) -- [REQUIRED]

                Determines the shuffling order in ShuffleConfig value.

        • OutputDataConfig (dict) -- [REQUIRED]

          the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

          • S3OutputPath (string) -- [REQUIRED]

            Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

          • CompressionType (string) --

            The model output compression type. Select None to output an uncompressed model, recommended for large model outputs. Defaults to gzip.

        • ResourceConfig (dict) -- [REQUIRED]

          The resources, including the ML compute instances and ML storage volumes, to use for model training.

          • InstanceType (string) --

            The ML compute instance type.

            Note

            SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

            Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.

            • US East (N. Virginia) (us-east-1)

            • US West (Oregon) (us-west-2)

            To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

          • InstanceCount (integer) --

            The number of ML compute instances to use. For distributed training, provide a value greater than 1.

          • VolumeSizeInGB (integer) -- [REQUIRED]

            The size of the ML storage volume that you want to provision.

            ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

            When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

            When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

            To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

            To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

          • VolumeKmsKeyId (string) --

            The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

            Note

            Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

            For a list of instance types that support local instance storage, see Instance Store Volumes.

            For more information about local instance storage encryption, see SSD Instance Store Volumes.

            The VolumeKmsKeyId can be in any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • InstanceGroups (list) --

            The configuration of a heterogeneous cluster in JSON format.

            • (dict) --

              Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

              • InstanceType (string) -- [REQUIRED]

                Specifies the instance type of the instance group.

              • InstanceCount (integer) -- [REQUIRED]

                Specifies the number of instances of the instance group.

              • InstanceGroupName (string) -- [REQUIRED]

                Specifies the name of the instance group.

          • KeepAlivePeriodInSeconds (integer) --

            The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

        • StoppingCondition (dict) -- [REQUIRED]

          Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

          To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

          • MaxRuntimeInSeconds (integer) --

            The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

            For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

            For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

            The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

          • MaxWaitTimeInSeconds (integer) --

            The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

            When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

      • TransformJobDefinition (dict) --

        The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.

        • MaxConcurrentTransforms (integer) --

          The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

        • MaxPayloadInMB (integer) --

          The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

        • BatchStrategy (string) --

          A string that determines the number of records included in a single mini-batch.

          SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

        • Environment (dict) --

          The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

          • (string) --

            • (string) --

        • TransformInput (dict) -- [REQUIRED]

          A description of the input source and the way the transform job consumes it.

          • DataSource (dict) -- [REQUIRED]

            Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

            • S3DataSource (dict) -- [REQUIRED]

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) -- [REQUIRED]

                If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                The following values are compatible: ManifestFile , S3Prefix

                The following value is not compatible: AugmentedManifestFile

              • S3Uri (string) -- [REQUIRED]

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix .

                • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

          • ContentType (string) --

            The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

          • CompressionType (string) --

            If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

          • SplitType (string) --

            The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

            • RecordIO

            • TFRecord

            When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

            Note

            Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

            For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

        • TransformOutput (dict) -- [REQUIRED]

          Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

          • S3OutputPath (string) -- [REQUIRED]

            The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

            For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

          • Accept (string) --

            The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

          • AssembleWith (string) --

            Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

            • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

            • Alias name: alias/ExampleAlias

            • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

            If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • TransformResources (dict) -- [REQUIRED]

          Identifies the ML compute instances for the transform job.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

          • VolumeKmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

            Note

            Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

            For a list of instance types that support local instance storage, see Instance Store Volumes.

            For more information about local instance storage encryption, see SSD Instance Store Volumes.

            The VolumeKmsKeyId can be any of the following formats:

            • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

            • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

            • Alias name: alias/ExampleAlias

            • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

type CertifyForMarketplace

boolean

param CertifyForMarketplace

Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.

type Tags

list

param Tags

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

  • (dict) --

    A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

    You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

    For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

    • Key (string) -- [REQUIRED]

      The tag key. Tag keys must be unique per resource.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'AlgorithmArn': 'string'
}

Response Structure

  • (dict) --

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the new algorithm.

CreateEndpointConfig (updated) Link ¶
Changes (request)
{'ProductionVariants': {'InstanceType': {'ml.p5.48xlarge'}},
 'ShadowProductionVariants': {'InstanceType': {'ml.p5.48xlarge'}}}

Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want SageMaker to provision. Then you call the CreateEndpoint API.

Note

Use this API if you want to use SageMaker hosting services to deploy models into production.

In the request, you define a ProductionVariant , for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.

Note

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

See also: AWS API Documentation

Request Syntax

client.create_endpoint_config(
    EndpointConfigName='string',
    ProductionVariants=[
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123,
            'EnableSSMAccess': True|False
        },
    ],
    DataCaptureConfig={
        'EnableCapture': True|False,
        'InitialSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'CaptureOptions': [
            {
                'CaptureMode': 'Input'|'Output'
            },
        ],
        'CaptureContentTypeHeader': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    KmsKeyId='string',
    AsyncInferenceConfig={
        'ClientConfig': {
            'MaxConcurrentInvocationsPerInstance': 123
        },
        'OutputConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string',
            'NotificationConfig': {
                'SuccessTopic': 'string',
                'ErrorTopic': 'string',
                'IncludeInferenceResponseIn': [
                    'SUCCESS_NOTIFICATION_TOPIC'|'ERROR_NOTIFICATION_TOPIC',
                ]
            },
            'S3FailurePath': 'string'
        }
    },
    ExplainerConfig={
        'ClarifyExplainerConfig': {
            'EnableExplanations': 'string',
            'InferenceConfig': {
                'FeaturesAttribute': 'string',
                'ContentTemplate': 'string',
                'MaxRecordCount': 123,
                'MaxPayloadInMB': 123,
                'ProbabilityIndex': 123,
                'LabelIndex': 123,
                'ProbabilityAttribute': 'string',
                'LabelAttribute': 'string',
                'LabelHeaders': [
                    'string',
                ],
                'FeatureHeaders': [
                    'string',
                ],
                'FeatureTypes': [
                    'numerical'|'categorical'|'text',
                ]
            },
            'ShapConfig': {
                'ShapBaselineConfig': {
                    'MimeType': 'string',
                    'ShapBaseline': 'string',
                    'ShapBaselineUri': 'string'
                },
                'NumberOfSamples': 123,
                'UseLogit': True|False,
                'Seed': 123,
                'TextConfig': {
                    'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx',
                    'Granularity': 'token'|'sentence'|'paragraph'
                }
            }
        }
    },
    ShadowProductionVariants=[
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123,
            'EnableSSMAccess': True|False
        },
    ]
)
type EndpointConfigName

string

param EndpointConfigName

[REQUIRED]

The name of the endpoint configuration. You specify this name in a CreateEndpoint request.

type ProductionVariants

list

param ProductionVariants

[REQUIRED]

An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

  • (dict) --

    Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check Production variants.

    • VariantName (string) -- [REQUIRED]

      The name of the production variant.

    • ModelName (string) -- [REQUIRED]

      The name of the model that you want to host. This is the name that you specified when creating the model.

    • InitialInstanceCount (integer) --

      Number of instances to launch initially.

    • InstanceType (string) --

      The ML compute instance type.

    • InitialVariantWeight (float) --

      Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

    • AcceleratorType (string) --

      The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

    • CoreDumpConfig (dict) --

      Specifies configuration for a core dump from the model container when the process crashes.

      • DestinationS3Uri (string) -- [REQUIRED]

        The Amazon S3 bucket to send the core dump to.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • // KMS Key Alias "alias/ExampleAlias"

        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

    • ServerlessConfig (dict) --

      The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

      • MemorySizeInMB (integer) -- [REQUIRED]

        The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

      • MaxConcurrency (integer) -- [REQUIRED]

        The maximum number of concurrent invocations your serverless endpoint can process.

      • ProvisionedConcurrency (integer) --

        The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

        Note

        This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

    • VolumeSizeInGB (integer) --

      The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

    • ModelDataDownloadTimeoutInSeconds (integer) --

      The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

    • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

      The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

    • EnableSSMAccess (boolean) --

      You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint .

type DataCaptureConfig

dict

param DataCaptureConfig

Configuration to control how SageMaker captures inference data.

  • EnableCapture (boolean) --

    Whether data capture should be enabled or disabled (defaults to enabled).

  • InitialSamplingPercentage (integer) -- [REQUIRED]

    The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.

  • DestinationS3Uri (string) -- [REQUIRED]

    The Amazon S3 location used to capture the data.

  • KmsKeyId (string) --

    The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.

    The KmsKeyId can be any of the following formats:

    • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

    • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

    • Alias name: alias/ExampleAlias

    • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

  • CaptureOptions (list) -- [REQUIRED]

    Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both

    • (dict) --

      Specifies data Model Monitor will capture.

      • CaptureMode (string) -- [REQUIRED]

        Specify the boundary of data to capture.

  • CaptureContentTypeHeader (dict) --

    Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

    • CsvContentTypes (list) --

      The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.

      • (string) --

    • JsonContentTypes (list) --

      The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

      • (string) --

type Tags

list

param Tags

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

  • (dict) --

    A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

    You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

    For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

    • Key (string) -- [REQUIRED]

      The tag key. Tag keys must be unique per resource.

    • Value (string) -- [REQUIRED]

      The tag value.

type KmsKeyId

string

param KmsKeyId

The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint , UpdateEndpoint requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMS

Note

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

type AsyncInferenceConfig

dict

param AsyncInferenceConfig

Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.

  • ClientConfig (dict) --

    Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

    • MaxConcurrentInvocationsPerInstance (integer) --

      The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

  • OutputConfig (dict) -- [REQUIRED]

    Specifies the configuration for asynchronous inference invocation outputs.

    • KmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

    • S3OutputPath (string) --

      The Amazon S3 location to upload inference responses to.

    • NotificationConfig (dict) --

      Specifies the configuration for notifications of inference results for asynchronous inference.

      • SuccessTopic (string) --

        Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

      • ErrorTopic (string) --

        Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

      • IncludeInferenceResponseIn (list) --

        The Amazon SNS topics where you want the inference response to be included.

        Note

        The inference response is included only if the response size is less than or equal to 128 KB.

        • (string) --

    • S3FailurePath (string) --

      The Amazon S3 location to upload failure inference responses to.

type ExplainerConfig

dict

param ExplainerConfig

A member of CreateEndpointConfig that enables explainers.

  • ClarifyExplainerConfig (dict) --

    A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

    • EnableExplanations (string) --

      A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

    • InferenceConfig (dict) --

      The inference configuration parameter for the model container.

      • FeaturesAttribute (string) --

        Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

      • ContentTemplate (string) --

        A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

      • MaxRecordCount (integer) --

        The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

      • MaxPayloadInMB (integer) --

        The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

      • ProbabilityIndex (integer) --

        A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

        Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

        Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

      • LabelIndex (integer) --

        A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

        Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .

      • ProbabilityAttribute (string) --

        A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

        Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .

      • LabelAttribute (string) --

        A JMESPath expression used to locate the list of label headers in the model container output.

        Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]

      • LabelHeaders (list) --

        For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

        • (string) --

      • FeatureHeaders (list) --

        The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

        • (string) --

      • FeatureTypes (list) --

        A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

        • (string) --

    • ShapConfig (dict) -- [REQUIRED]

      The configuration for SHAP analysis.

      • ShapBaselineConfig (dict) -- [REQUIRED]

        The configuration for the SHAP baseline of the Kernal SHAP algorithm.

        • MimeType (string) --

          The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

        • ShapBaseline (string) --

          The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

        • ShapBaselineUri (string) --

          The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

      • NumberOfSamples (integer) --

        The number of samples to be used for analysis by the Kernal SHAP algorithm.

        Note

        The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

      • UseLogit (boolean) --

        A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

      • Seed (integer) --

        The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

      • TextConfig (dict) --

        A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

        • Language (string) -- [REQUIRED]

          Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

          Note

          For a mix of multiple languages, use code 'xx' .

        • Granularity (string) -- [REQUIRED]

          The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

type ShadowProductionVariants

list

param ShadowProductionVariants

An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants . If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .

  • (dict) --

    Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check Production variants.

    • VariantName (string) -- [REQUIRED]

      The name of the production variant.

    • ModelName (string) -- [REQUIRED]

      The name of the model that you want to host. This is the name that you specified when creating the model.

    • InitialInstanceCount (integer) --

      Number of instances to launch initially.

    • InstanceType (string) --

      The ML compute instance type.

    • InitialVariantWeight (float) --

      Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

    • AcceleratorType (string) --

      The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

    • CoreDumpConfig (dict) --

      Specifies configuration for a core dump from the model container when the process crashes.

      • DestinationS3Uri (string) -- [REQUIRED]

        The Amazon S3 bucket to send the core dump to.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • // KMS Key Alias "alias/ExampleAlias"

        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

    • ServerlessConfig (dict) --

      The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

      • MemorySizeInMB (integer) -- [REQUIRED]

        The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

      • MaxConcurrency (integer) -- [REQUIRED]

        The maximum number of concurrent invocations your serverless endpoint can process.

      • ProvisionedConcurrency (integer) --

        The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

        Note

        This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

    • VolumeSizeInGB (integer) --

      The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

    • ModelDataDownloadTimeoutInSeconds (integer) --

      The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

    • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

      The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

    • EnableSSMAccess (boolean) --

      You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint .

rtype

dict

returns

Response Syntax

{
    'EndpointConfigArn': 'string'
}

Response Structure

  • (dict) --

    • EndpointConfigArn (string) --

      The Amazon Resource Name (ARN) of the endpoint configuration.

CreateInferenceRecommendationsJob (updated) Link ¶
Changes (request)
{'InputConfig': {'EndpointConfigurations': {'InstanceType': {'ml.p5.48xlarge'}}}}

Starts a recommendation job. You can create either an instance recommendation or load test job.

See also: AWS API Documentation

Request Syntax

client.create_inference_recommendations_job(
    JobName='string',
    JobType='Default'|'Advanced',
    RoleArn='string',
    InputConfig={
        'ModelPackageVersionArn': 'string',
        'JobDurationInSeconds': 123,
        'TrafficPattern': {
            'TrafficType': 'PHASES'|'STAIRS',
            'Phases': [
                {
                    'InitialNumberOfUsers': 123,
                    'SpawnRate': 123,
                    'DurationInSeconds': 123
                },
            ],
            'Stairs': {
                'DurationInSeconds': 123,
                'NumberOfSteps': 123,
                'UsersPerStep': 123
            }
        },
        'ResourceLimit': {
            'MaxNumberOfTests': 123,
            'MaxParallelOfTests': 123
        },
        'EndpointConfigurations': [
            {
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                'InferenceSpecificationName': 'string',
                'EnvironmentParameterRanges': {
                    'CategoricalParameterRanges': [
                        {
                            'Name': 'string',
                            'Value': [
                                'string',
                            ]
                        },
                    ]
                },
                'ServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                }
            },
        ],
        'VolumeKmsKeyId': 'string',
        'ContainerConfig': {
            'Domain': 'string',
            'Task': 'string',
            'Framework': 'string',
            'FrameworkVersion': 'string',
            'PayloadConfig': {
                'SamplePayloadUrl': 'string',
                'SupportedContentTypes': [
                    'string',
                ]
            },
            'NearestModelName': 'string',
            'SupportedInstanceTypes': [
                'string',
            ],
            'DataInputConfig': 'string',
            'SupportedEndpointType': 'RealTime'|'Serverless',
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
        'Endpoints': [
            {
                'EndpointName': 'string'
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'ModelName': 'string'
    },
    JobDescription='string',
    StoppingConditions={
        'MaxInvocations': 123,
        'ModelLatencyThresholds': [
            {
                'Percentile': 'string',
                'ValueInMilliseconds': 123
            },
        ],
        'FlatInvocations': 'Continue'|'Stop'
    },
    OutputConfig={
        'KmsKeyId': 'string',
        'CompiledOutputConfig': {
            'S3OutputUri': 'string'
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type JobName

string

param JobName

[REQUIRED]

A name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. The job name is passed down to the resources created by the recommendation job. The names of resources (such as the model, endpoint configuration, endpoint, and compilation) that are prefixed with the job name are truncated at 40 characters.

type JobType

string

param JobType

[REQUIRED]

Defines the type of recommendation job. Specify Default to initiate an instance recommendation and Advanced to initiate a load test. If left unspecified, Amazon SageMaker Inference Recommender will run an instance recommendation ( DEFAULT ) job.

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

type InputConfig

dict

param InputConfig

[REQUIRED]

Provides information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations.

  • ModelPackageVersionArn (string) --

    The Amazon Resource Name (ARN) of a versioned model package.

  • JobDurationInSeconds (integer) --

    Specifies the maximum duration of the job, in seconds. The maximum value is 18,000 seconds.

  • TrafficPattern (dict) --

    Specifies the traffic pattern of the job.

    • TrafficType (string) --

      Defines the traffic patterns. Choose either PHASES or STAIRS .

    • Phases (list) --

      Defines the phases traffic specification.

      • (dict) --

        Defines the traffic pattern.

        • InitialNumberOfUsers (integer) --

          Specifies how many concurrent users to start with. The value should be between 1 and 3.

        • SpawnRate (integer) --

          Specified how many new users to spawn in a minute.

        • DurationInSeconds (integer) --

          Specifies how long a traffic phase should be. For custom load tests, the value should be between 120 and 3600. This value should not exceed JobDurationInSeconds .

    • Stairs (dict) --

      Defines the stairs traffic pattern.

      • DurationInSeconds (integer) --

        Defines how long each traffic step should be.

      • NumberOfSteps (integer) --

        Specifies how many steps to perform during traffic.

      • UsersPerStep (integer) --

        Specifies how many new users to spawn in each step.

  • ResourceLimit (dict) --

    Defines the resource limit of the job.

    • MaxNumberOfTests (integer) --

      Defines the maximum number of load tests.

    • MaxParallelOfTests (integer) --

      Defines the maximum number of parallel load tests.

  • EndpointConfigurations (list) --

    Specifies the endpoint configuration to use for a job.

    • (dict) --

      The endpoint configuration for the load test.

      • InstanceType (string) --

        The instance types to use for the load test.

      • InferenceSpecificationName (string) --

        The inference specification name in the model package version.

      • EnvironmentParameterRanges (dict) --

        The parameter you want to benchmark against.

        • CategoricalParameterRanges (list) --

          Specified a list of parameters for each category.

          • (dict) --

            Environment parameters you want to benchmark your load test against.

            • Name (string) -- [REQUIRED]

              The Name of the environment variable.

            • Value (list) -- [REQUIRED]

              The list of values you can pass.

              • (string) --

      • ServerlessConfig (dict) --

        Specifies the serverless configuration for an endpoint variant.

        • MemorySizeInMB (integer) -- [REQUIRED]

          The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

        • MaxConcurrency (integer) -- [REQUIRED]

          The maximum number of concurrent invocations your serverless endpoint can process.

        • ProvisionedConcurrency (integer) --

          The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

          Note

          This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

  • VolumeKmsKeyId (string) --

    The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. This key will be passed to SageMaker Hosting for endpoint creation.

    The SageMaker execution role must have kms:CreateGrant permission in order to encrypt data on the storage volume of the endpoints created for inference recommendation. The inference recommendation job will fail asynchronously during endpoint configuration creation if the role passed does not have kms:CreateGrant permission.

    The KmsKeyId can be any of the following formats:

    • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

    • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"

    • // KMS Key Alias "alias/ExampleAlias"

    • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

    For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

  • ContainerConfig (dict) --

    Specifies mandatory fields for running an Inference Recommender job. The fields specified in ContainerConfig override the corresponding fields in the model package.

    • Domain (string) --

      The machine learning domain of the model and its components.

      Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

    • Task (string) --

      The machine learning task that the model accomplishes.

      Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

    • Framework (string) --

      The machine learning framework of the container image.

      Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

    • FrameworkVersion (string) --

      The framework version of the container image.

    • PayloadConfig (dict) --

      Specifies the SamplePayloadUrl and all other sample payload-related fields.

      • SamplePayloadUrl (string) --

        The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --

    • NearestModelName (string) --

      The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

      Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

    • SupportedInstanceTypes (list) --

      A list of the instance types that are used to generate inferences in real-time.

      • (string) --

    • DataInputConfig (string) --

      Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

    • SupportedEndpointType (string) --

      The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.

    • SupportedResponseMIMETypes (list) --

      The supported MIME types for the output data.

      • (string) --

  • Endpoints (list) --

    Existing customer endpoints on which to run an Inference Recommender job.

    • (dict) --

      Details about a customer endpoint that was compared in an Inference Recommender job.

      • EndpointName (string) -- [REQUIRED]

        The name of a customer's endpoint.

  • VpcConfig (dict) --

    Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

    • SecurityGroupIds (list) -- [REQUIRED]

      The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the security groups for the VPC that is specified in the Subnets field.

      • (string) --

    • Subnets (list) -- [REQUIRED]

      The ID of the subnets in the VPC to which you want to connect your model.

      • (string) --

  • ModelName (string) --

    The name of the created model.

type JobDescription

string

param JobDescription

Description of the recommendation job.

type StoppingConditions

dict

param StoppingConditions

A set of conditions for stopping a recommendation job. If any of the conditions are met, the job is automatically stopped.

  • MaxInvocations (integer) --

    The maximum number of requests per minute expected for the endpoint.

  • ModelLatencyThresholds (list) --

    The interval of time taken by a model to respond as viewed from SageMaker. The interval includes the local communication time taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.

    • (dict) --

      The model latency threshold.

      • Percentile (string) --

        The model latency percentile threshold. Acceptable values are P95 and P99 . For custom load tests, specify the value as P95 .

      • ValueInMilliseconds (integer) --

        The model latency percentile value in milliseconds.

  • FlatInvocations (string) --

    Stops a load test when the number of invocations (TPS) peaks and flattens, which means that the instance has reached capacity. The default value is Stop . If you want the load test to continue after invocations have flattened, set the value to Continue .

type OutputConfig

dict

param OutputConfig

Provides information about the output artifacts and the KMS key to use for Amazon S3 server-side encryption.

  • KmsKeyId (string) --

    The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output artifacts with Amazon S3 server-side encryption. The SageMaker execution role must have kms:GenerateDataKey permission.

    The KmsKeyId can be any of the following formats:

    • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

    • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"

    • // KMS Key Alias "alias/ExampleAlias"

    • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

    For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

  • CompiledOutputConfig (dict) --

    Provides information about the output configuration for the compiled model.

    • S3OutputUri (string) --

      Identifies the Amazon S3 bucket where you want SageMaker to store the compiled model artifacts.

type Tags

list

param Tags

The metadata that you apply to Amazon Web Services resources to help you categorize and organize them. Each tag consists of a key and a value, both of which you define. For more information, see Tagging Amazon Web Services Resources in the Amazon Web Services General Reference.

  • (dict) --

    A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

    You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

    For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

    • Key (string) -- [REQUIRED]

      The tag key. Tag keys must be unique per resource.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'JobArn': 'string'
}

Response Structure

  • (dict) --

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the recommendation job.

CreateModelPackage (updated) Link ¶
Changes (request)
{'AdditionalInferenceSpecifications': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}},
 'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}}}

Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification . To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for SourceAlgorithmSpecification .

Note

There are two types of model packages:

  • Versioned - a model that is part of a model group in the model registry.

  • Unversioned - a model package that is not part of a model group.

See also: AWS API Documentation

Request Syntax

client.create_model_package(
    ModelPackageName='string',
    ModelPackageGroupName='string',
    ModelPackageDescription='string',
    InferenceSpecification={
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    ValidationSpecification={
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    SourceAlgorithmSpecification={
        'SourceAlgorithms': [
            {
                'ModelDataUrl': 'string',
                'AlgorithmName': 'string'
            },
        ]
    },
    CertifyForMarketplace=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval',
    MetadataProperties={
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    ModelMetrics={
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Bias': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    ClientToken='string',
    CustomerMetadataProperties={
        'string': 'string'
    },
    DriftCheckBaselines={
        'Bias': {
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    Domain='string',
    Task='string',
    SamplePayloadUrl='string',
    AdditionalInferenceSpecifications=[
        {
            'Name': 'string',
            'Description': 'string',
            'Containers': [
                {
                    'ContainerHostname': 'string',
                    'Image': 'string',
                    'ImageDigest': 'string',
                    'ModelDataUrl': 'string',
                    'ProductId': 'string',
                    'Environment': {
                        'string': 'string'
                    },
                    'ModelInput': {
                        'DataInputConfig': 'string'
                    },
                    'Framework': 'string',
                    'FrameworkVersion': 'string',
                    'NearestModelName': 'string'
                },
            ],
            'SupportedTransformInstanceTypes': [
                'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            ],
            'SupportedRealtimeInferenceInstanceTypes': [
                'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            ],
            'SupportedContentTypes': [
                'string',
            ],
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
    ],
    SkipModelValidation='All'|'None'
)
type ModelPackageName

string

param ModelPackageName

The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

This parameter is required for unversioned models. It is not applicable to versioned models.

type ModelPackageGroupName

string

param ModelPackageGroupName

The name or Amazon Resource Name (ARN) of the model package group that this model version belongs to.

This parameter is required for versioned models, and does not apply to unversioned models.

type ModelPackageDescription

string

param ModelPackageDescription

A description of the model package.

type InferenceSpecification

dict

param InferenceSpecification

Specifies details about inference jobs that can be run with models based on this model package, including the following:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the model package supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the model package supports for inference.

  • Containers (list) -- [REQUIRED]

    The Amazon ECR registry path of the Docker image that contains the inference code.

    • (dict) --

      Describes the Docker container for the model package.

      • ContainerHostname (string) --

        The DNS host name for the Docker container.

      • Image (string) -- [REQUIRED]

        The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

        If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • ImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • ModelDataUrl (string) --

        The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

        Note

        The model artifacts must be in an S3 bucket that is in the same region as the model package.

      • ProductId (string) --

        The Amazon Web Services Marketplace product ID of the model package.

      • Environment (dict) --

        The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

        • (string) --

          • (string) --

      • ModelInput (dict) --

        A structure with Model Input details.

        • DataInputConfig (string) -- [REQUIRED]

          The input configuration object for the model.

      • Framework (string) --

        The machine learning framework of the model package container image.

      • FrameworkVersion (string) --

        The framework version of the Model Package Container Image.

      • NearestModelName (string) --

        The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

  • SupportedTransformInstanceTypes (list) --

    A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

    This parameter is required for unversioned models, and optional for versioned models.

    • (string) --

  • SupportedRealtimeInferenceInstanceTypes (list) --

    A list of the instance types that are used to generate inferences in real-time.

    This parameter is required for unversioned models, and optional for versioned models.

    • (string) --

  • SupportedContentTypes (list) -- [REQUIRED]

    The supported MIME types for the input data.

    • (string) --

  • SupportedResponseMIMETypes (list) -- [REQUIRED]

    The supported MIME types for the output data.

    • (string) --

type ValidationSpecification

dict

param ValidationSpecification

Specifies configurations for one or more transform jobs that SageMaker runs to test the model package.

  • ValidationRole (string) -- [REQUIRED]

    The IAM roles to be used for the validation of the model package.

  • ValidationProfiles (list) -- [REQUIRED]

    An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.

    • (dict) --

      Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

      The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

      • ProfileName (string) -- [REQUIRED]

        The name of the profile for the model package.

      • TransformJobDefinition (dict) -- [REQUIRED]

        The TransformJobDefinition object that describes the transform job used for the validation of the model package.

        • MaxConcurrentTransforms (integer) --

          The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

        • MaxPayloadInMB (integer) --

          The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

        • BatchStrategy (string) --

          A string that determines the number of records included in a single mini-batch.

          SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

        • Environment (dict) --

          The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

          • (string) --

            • (string) --

        • TransformInput (dict) -- [REQUIRED]

          A description of the input source and the way the transform job consumes it.

          • DataSource (dict) -- [REQUIRED]

            Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

            • S3DataSource (dict) -- [REQUIRED]

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) -- [REQUIRED]

                If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                The following values are compatible: ManifestFile , S3Prefix

                The following value is not compatible: AugmentedManifestFile

              • S3Uri (string) -- [REQUIRED]

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix .

                • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

          • ContentType (string) --

            The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

          • CompressionType (string) --

            If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

          • SplitType (string) --

            The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

            • RecordIO

            • TFRecord

            When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

            Note

            Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

            For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

        • TransformOutput (dict) -- [REQUIRED]

          Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

          • S3OutputPath (string) -- [REQUIRED]

            The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

            For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

          • Accept (string) --

            The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

          • AssembleWith (string) --

            Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

            • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

            • Alias name: alias/ExampleAlias

            • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

            If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • TransformResources (dict) -- [REQUIRED]

          Identifies the ML compute instances for the transform job.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

          • VolumeKmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

            Note

            Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

            For a list of instance types that support local instance storage, see Instance Store Volumes.

            For more information about local instance storage encryption, see SSD Instance Store Volumes.

            The VolumeKmsKeyId can be any of the following formats:

            • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

            • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

            • Alias name: alias/ExampleAlias

            • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

type SourceAlgorithmSpecification

dict

param SourceAlgorithmSpecification

Details about the algorithm that was used to create the model package.

  • SourceAlgorithms (list) -- [REQUIRED]

    A list of the algorithms that were used to create a model package.

    • (dict) --

      Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

      • ModelDataUrl (string) --

        The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

        Note

        The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.

      • AlgorithmName (string) -- [REQUIRED]

        The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

type CertifyForMarketplace

boolean

param CertifyForMarketplace

Whether to certify the model package for listing on Amazon Web Services Marketplace.

This parameter is optional for unversioned models, and does not apply to versioned models.

type Tags

list

param Tags

A list of key value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide .

If you supply ModelPackageGroupName , your model package belongs to the model group you specify and uses the tags associated with the model group. In this case, you cannot supply a tag argument.

  • (dict) --

    A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

    You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

    For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

    • Key (string) -- [REQUIRED]

      The tag key. Tag keys must be unique per resource.

    • Value (string) -- [REQUIRED]

      The tag value.

type ModelApprovalStatus

string

param ModelApprovalStatus

Whether the model is approved for deployment.

This parameter is optional for versioned models, and does not apply to unversioned models.

For versioned models, the value of this parameter must be set to Approved to deploy the model.

type MetadataProperties

dict

param MetadataProperties

Metadata properties of the tracking entity, trial, or trial component.

  • CommitId (string) --

    The commit ID.

  • Repository (string) --

    The repository.

  • GeneratedBy (string) --

    The entity this entity was generated by.

  • ProjectId (string) --

    The project ID.

type ModelMetrics

dict

param ModelMetrics

A structure that contains model metrics reports.

  • ModelQuality (dict) --

    Metrics that measure the quality of a model.

    • Statistics (dict) --

      Model quality statistics.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • Constraints (dict) --

      Model quality constraints.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

  • ModelDataQuality (dict) --

    Metrics that measure the quality of the input data for a model.

    • Statistics (dict) --

      Data quality statistics for a model.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • Constraints (dict) --

      Data quality constraints for a model.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

  • Bias (dict) --

    Metrics that measure bais in a model.

    • Report (dict) --

      The bias report for a model

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • PreTrainingReport (dict) --

      The pre-training bias report for a model.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • PostTrainingReport (dict) --

      The post-training bias report for a model.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

  • Explainability (dict) --

    Metrics that help explain a model.

    • Report (dict) --

      The explainability report for a model.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

type ClientToken

string

param ClientToken

A unique token that guarantees that the call to this API is idempotent.

This field is autopopulated if not provided.

type CustomerMetadataProperties

dict

param CustomerMetadataProperties

The metadata properties associated with the model package versions.

  • (string) --

    • (string) --

type DriftCheckBaselines

dict

param DriftCheckBaselines

Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide .

  • Bias (dict) --

    Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

    • ConfigFile (dict) --

      The bias config file for a model.

      • ContentType (string) --

        The type of content stored in the file source.

      • ContentDigest (string) --

        The digest of the file source.

      • S3Uri (string) -- [REQUIRED]

        The Amazon S3 URI for the file source.

    • PreTrainingConstraints (dict) --

      The pre-training constraints.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • PostTrainingConstraints (dict) --

      The post-training constraints.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

  • Explainability (dict) --

    Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

    • Constraints (dict) --

      The drift check explainability constraints.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • ConfigFile (dict) --

      The explainability config file for the model.

      • ContentType (string) --

        The type of content stored in the file source.

      • ContentDigest (string) --

        The digest of the file source.

      • S3Uri (string) -- [REQUIRED]

        The Amazon S3 URI for the file source.

  • ModelQuality (dict) --

    Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

    • Statistics (dict) --

      The drift check model quality statistics.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • Constraints (dict) --

      The drift check model quality constraints.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

  • ModelDataQuality (dict) --

    Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.

    • Statistics (dict) --

      The drift check model data quality statistics.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

    • Constraints (dict) --

      The drift check model data quality constraints.

      • ContentType (string) -- [REQUIRED]

        The metric source content type.

      • ContentDigest (string) --

        The hash key used for the metrics source.

      • S3Uri (string) -- [REQUIRED]

        The S3 URI for the metrics source.

type Domain

string

param Domain

The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.

type Task

string

param Task

The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification. The following tasks are supported by Inference Recommender: "IMAGE_CLASSIFICATION" | "OBJECT_DETECTION" | "TEXT_GENERATION" | "IMAGE_SEGMENTATION" | "FILL_MASK" | "CLASSIFICATION" | "REGRESSION" | "OTHER" .

Specify "OTHER" if none of the tasks listed fit your use case.

type SamplePayloadUrl

string

param SamplePayloadUrl

The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the InvokeEndpoint call.

type AdditionalInferenceSpecifications

list

param AdditionalInferenceSpecifications

An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

  • (dict) --

    A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

    • Name (string) -- [REQUIRED]

      A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

    • Description (string) --

      A description of the additional Inference specification

    • Containers (list) -- [REQUIRED]

      The Amazon ECR registry path of the Docker image that contains the inference code.

      • (dict) --

        Describes the Docker container for the model package.

        • ContainerHostname (string) --

          The DNS host name for the Docker container.

        • Image (string) -- [REQUIRED]

          The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

          If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • ImageDigest (string) --

          An MD5 hash of the training algorithm that identifies the Docker image used for training.

        • ModelDataUrl (string) --

          The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the model package.

        • ProductId (string) --

          The Amazon Web Services Marketplace product ID of the model package.

        • Environment (dict) --

          The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

          • (string) --

            • (string) --

        • ModelInput (dict) --

          A structure with Model Input details.

          • DataInputConfig (string) -- [REQUIRED]

            The input configuration object for the model.

        • Framework (string) --

          The machine learning framework of the model package container image.

        • FrameworkVersion (string) --

          The framework version of the Model Package Container Image.

        • NearestModelName (string) --

          The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

    • SupportedTransformInstanceTypes (list) --

      A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

      • (string) --

    • SupportedRealtimeInferenceInstanceTypes (list) --

      A list of the instance types that are used to generate inferences in real-time.

      • (string) --

    • SupportedContentTypes (list) --

      The supported MIME types for the input data.

      • (string) --

    • SupportedResponseMIMETypes (list) --

      The supported MIME types for the output data.

      • (string) --

type SkipModelValidation

string

param SkipModelValidation

Indicates if you want to skip model validation.

rtype

dict

returns

Response Syntax

{
    'ModelPackageArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the new model package.

DescribeAlgorithm (updated) Link ¶
Changes (response)
{'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}}}

Returns a description of the specified algorithm that is in your account.

See also: AWS API Documentation

Request Syntax

client.describe_algorithm(
    AlgorithmName='string'
)
type AlgorithmName

string

param AlgorithmName

[REQUIRED]

The name of the algorithm to describe.

rtype

dict

returns

Response Syntax

{
    'AlgorithmName': 'string',
    'AlgorithmArn': 'string',
    'AlgorithmDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'TrainingSpecification': {
        'TrainingImage': 'string',
        'TrainingImageDigest': 'string',
        'SupportedHyperParameters': [
            {
                'Name': 'string',
                'Description': 'string',
                'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText',
                'Range': {
                    'IntegerParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'ContinuousParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'CategoricalParameterRangeSpecification': {
                        'Values': [
                            'string',
                        ]
                    }
                },
                'IsTunable': True|False,
                'IsRequired': True|False,
                'DefaultValue': 'string'
            },
        ],
        'SupportedTrainingInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.p5.48xlarge',
        ],
        'SupportsDistributedTraining': True|False,
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'TrainingChannels': [
            {
                'Name': 'string',
                'Description': 'string',
                'IsRequired': True|False,
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedCompressionTypes': [
                    'None'|'Gzip',
                ],
                'SupportedInputModes': [
                    'Pipe'|'File'|'FastFile',
                ]
            },
        ],
        'SupportedTuningJobObjectiveMetrics': [
            {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
        ]
    },
    'InferenceSpecification': {
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    'ValidationSpecification': {
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TrainingJobDefinition': {
                    'TrainingInputMode': 'Pipe'|'File'|'FastFile',
                    'HyperParameters': {
                        'string': 'string'
                    },
                    'InputDataConfig': [
                        {
                            'ChannelName': 'string',
                            'DataSource': {
                                'S3DataSource': {
                                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                    'S3Uri': 'string',
                                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                                    'AttributeNames': [
                                        'string',
                                    ],
                                    'InstanceGroupNames': [
                                        'string',
                                    ]
                                },
                                'FileSystemDataSource': {
                                    'FileSystemId': 'string',
                                    'FileSystemAccessMode': 'rw'|'ro',
                                    'FileSystemType': 'EFS'|'FSxLustre',
                                    'DirectoryPath': 'string'
                                }
                            },
                            'ContentType': 'string',
                            'CompressionType': 'None'|'Gzip',
                            'RecordWrapperType': 'None'|'RecordIO',
                            'InputMode': 'Pipe'|'File'|'FastFile',
                            'ShuffleConfig': {
                                'Seed': 123
                            }
                        },
                    ],
                    'OutputDataConfig': {
                        'KmsKeyId': 'string',
                        'S3OutputPath': 'string',
                        'CompressionType': 'GZIP'|'NONE'
                    },
                    'ResourceConfig': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.p5.48xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123,
                        'VolumeKmsKeyId': 'string',
                        'InstanceGroups': [
                            {
                                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.trn1n.32xlarge'|'ml.p5.48xlarge',
                                'InstanceCount': 123,
                                'InstanceGroupName': 'string'
                            },
                        ],
                        'KeepAlivePeriodInSeconds': 123
                    },
                    'StoppingCondition': {
                        'MaxRuntimeInSeconds': 123,
                        'MaxWaitTimeInSeconds': 123
                    }
                },
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    'AlgorithmStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
    'AlgorithmStatusDetails': {
        'ValidationStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ],
        'ImageScanStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ]
    },
    'ProductId': 'string',
    'CertifyForMarketplace': True|False
}

Response Structure

  • (dict) --

    • AlgorithmName (string) --

      The name of the algorithm being described.

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the algorithm.

    • AlgorithmDescription (string) --

      A brief summary about the algorithm.

    • CreationTime (datetime) --

      A timestamp specifying when the algorithm was created.

    • TrainingSpecification (dict) --

      Details about training jobs run by this algorithm.

      • TrainingImage (string) --

        The Amazon ECR registry path of the Docker image that contains the training algorithm.

      • TrainingImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • SupportedHyperParameters (list) --

        A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

        • (dict) --

          Defines a hyperparameter to be used by an algorithm.

          • Name (string) --

            The name of this hyperparameter. The name must be unique.

          • Description (string) --

            A brief description of the hyperparameter.

          • Type (string) --

            The type of this hyperparameter. The valid types are Integer , Continuous , Categorical , and FreeText .

          • Range (dict) --

            The allowed range for this hyperparameter.

            • IntegerParameterRangeSpecification (dict) --

              A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

              • MinValue (string) --

                The minimum integer value allowed.

              • MaxValue (string) --

                The maximum integer value allowed.

            • ContinuousParameterRangeSpecification (dict) --

              A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

              • MinValue (string) --

                The minimum floating-point value allowed.

              • MaxValue (string) --

                The maximum floating-point value allowed.

            • CategoricalParameterRangeSpecification (dict) --

              A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

              • Values (list) --

                The allowed categories for the hyperparameter.

                • (string) --

          • IsTunable (boolean) --

            Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

          • IsRequired (boolean) --

            Indicates whether this hyperparameter is required.

          • DefaultValue (string) --

            The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

      • SupportedTrainingInstanceTypes (list) --

        A list of the instance types that this algorithm can use for training.

        • (string) --

      • SupportsDistributedTraining (boolean) --

        Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

      • MetricDefinitions (list) --

        A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . You can view these logs to understand how your training job performs and check for any errors encountered during training. SageMaker hyperparameter tuning captures all defined metrics. Specify one of the defined metrics to use as an objective metric using the TuningObjective parameter in the HyperParameterTrainingJobDefinition API to evaluate job performance during hyperparameter tuning.

          • Name (string) --

            The name of the metric.

          • Regex (string) --

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.

      • TrainingChannels (list) --

        A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

        • (dict) --

          Defines a named input source, called a channel, to be used by an algorithm.

          • Name (string) --

            The name of the channel.

          • Description (string) --

            A brief description of the channel.

          • IsRequired (boolean) --

            Indicates whether the channel is required by the algorithm.

          • SupportedContentTypes (list) --

            The supported MIME types for the data.

            • (string) --

          • SupportedCompressionTypes (list) --

            The allowed compression types, if data compression is used.

            • (string) --

          • SupportedInputModes (list) --

            The allowed input mode, either FILE or PIPE.

            In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

            In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

            • (string) --

              The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

              Pipe mode

              If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

              File mode

              If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

              You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

              For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

              FastFile mode

              If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

              FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

      • SupportedTuningJobObjectiveMetrics (list) --

        A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

        • (dict) --

          Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

          • Type (string) --

            Whether to minimize or maximize the objective metric.

          • MetricName (string) --

            The name of the metric to use for the objective metric.

    • InferenceSpecification (dict) --

      Details about inference jobs that the algorithm runs.

      • Containers (list) --

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) --

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the model package.

          • ProductId (string) --

            The Amazon Web Services Marketplace product ID of the model package.

          • Environment (dict) --

            The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

            • (string) --

              • (string) --

          • ModelInput (dict) --

            A structure with Model Input details.

            • DataInputConfig (string) --

              The input configuration object for the model.

          • Framework (string) --

            The machine learning framework of the model package container image.

          • FrameworkVersion (string) --

            The framework version of the Model Package Container Image.

          • NearestModelName (string) --

            The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --

      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --

      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --

      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --

    • ValidationSpecification (dict) --

      Details about configurations for one or more training jobs that SageMaker runs to test the algorithm.

      • ValidationRole (string) --

        The IAM roles that SageMaker uses to run the training jobs.

      • ValidationProfiles (list) --

        An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.

        • (dict) --

          Defines a training job and a batch transform job that SageMaker runs to validate your algorithm.

          The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

          • ProfileName (string) --

            The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

          • TrainingJobDefinition (dict) --

            The TrainingJobDefinition object that describes the training job that SageMaker runs to validate your algorithm.

            • TrainingInputMode (string) --

              The training input mode that the algorithm supports. For more information about input modes, see Algorithms.

              Pipe mode

              If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

              File mode

              If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.

              You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.

              For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.

              FastFile mode

              If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.

              FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.

            • HyperParameters (dict) --

              The hyperparameters used for the training job.

              • (string) --

                • (string) --

            • InputDataConfig (list) --

              An array of Channel objects, each of which specifies an input source.

              • (dict) --

                A channel is a named input source that training algorithms can consume.

                • ChannelName (string) --

                  The name of the channel.

                • DataSource (dict) --

                  The location of the channel data.

                  • S3DataSource (dict) --

                    The S3 location of the data source that is associated with a channel.

                    • S3DataType (string) --

                      If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.

                      If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.

                      If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                    • S3Uri (string) --

                      Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                      • A key name prefix might look like this: s3://bucketname/exampleprefix

                      • A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.

                      Your input bucket must be located in same Amazon Web Services region as your training job.

                    • S3DataDistributionType (string) --

                      If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                      If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                      Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                      In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                    • AttributeNames (list) --

                      A list of one or more attribute names to use that are found in a specified augmented manifest file.

                      • (string) --

                    • InstanceGroupNames (list) --

                      A list of names of instance groups that get data from the S3 data source.

                      • (string) --

                  • FileSystemDataSource (dict) --

                    The file system that is associated with a channel.

                    • FileSystemId (string) --

                      The file system id.

                    • FileSystemAccessMode (string) --

                      The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                    • FileSystemType (string) --

                      The file system type.

                    • DirectoryPath (string) --

                      The full path to the directory to associate with the channel.

                • ContentType (string) --

                  The MIME type of the data.

                • CompressionType (string) --

                  If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

                • RecordWrapperType (string) --

                  Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

                  In File mode, leave this field unset or set it to None.

                • InputMode (string) --

                  (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

                  To use a model for incremental training, choose File input model.

                • ShuffleConfig (dict) --

                  A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

                  For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

                  • Seed (integer) --

                    Determines the shuffling order in ShuffleConfig value.

            • OutputDataConfig (dict) --

              the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.

              • KmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

                • // KMS Key Alias "alias/ExampleAlias"

                • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

                If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

              • S3OutputPath (string) --

                Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

              • CompressionType (string) --

                The model output compression type. Select None to output an uncompressed model, recommended for large model outputs. Defaults to gzip.

            • ResourceConfig (dict) --

              The resources, including the ML compute instances and ML storage volumes, to use for model training.

              • InstanceType (string) --

                The ML compute instance type.

                Note

                SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.

                Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances ( ml.p4de.24xlarge ) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions.

                • US East (N. Virginia) (us-east-1)

                • US West (Oregon) (us-west-2)

                To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.

              • InstanceCount (integer) --

                The number of ML compute instances to use. For distributed training, provide a value greater than 1.

              • VolumeSizeInGB (integer) --

                The size of the ML storage volume that you want to provision.

                ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

                When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .

                When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .

                To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.

                To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.

              • VolumeKmsKeyId (string) --

                The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be in any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

              • InstanceGroups (list) --

                The configuration of a heterogeneous cluster in JSON format.

                • (dict) --

                  Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .

                  • InstanceType (string) --

                    Specifies the instance type of the instance group.

                  • InstanceCount (integer) --

                    Specifies the number of instances of the instance group.

                  • InstanceGroupName (string) --

                    Specifies the name of the instance group.

              • KeepAlivePeriodInSeconds (integer) --

                The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.

            • StoppingCondition (dict) --

              Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

              To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

              • MaxRuntimeInSeconds (integer) --

                The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.

                For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.

                For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.

                The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.

              • MaxWaitTimeInSeconds (integer) --

                The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.

                When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.

          • TransformJobDefinition (dict) --

            The TransformJobDefinition object that describes the transform job that SageMaker runs to validate your algorithm.

            • MaxConcurrentTransforms (integer) --

              The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

            • MaxPayloadInMB (integer) --

              The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

            • BatchStrategy (string) --

              A string that determines the number of records included in a single mini-batch.

              SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

            • Environment (dict) --

              The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

              • (string) --

                • (string) --

            • TransformInput (dict) --

              A description of the input source and the way the transform job consumes it.

              • DataSource (dict) --

                Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) --

                    If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                    The following values are compatible: ManifestFile , S3Prefix

                    The following value is not compatible: AugmentedManifestFile

                  • S3Uri (string) --

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix .

                    • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

              • ContentType (string) --

                The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

              • CompressionType (string) --

                If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

              • SplitType (string) --

                The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

                • RecordIO

                • TFRecord

                When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

                Note

                Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

                For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

            • TransformOutput (dict) --

              Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

              • S3OutputPath (string) --

                The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

                For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

              • Accept (string) --

                The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

              • AssembleWith (string) --

                Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

              • KmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

                • Alias name: alias/ExampleAlias

                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

                If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

            • TransformResources (dict) --

              Identifies the ML compute instances for the transform job.

              • InstanceType (string) --

                The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

              • InstanceCount (integer) --

                The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

              • VolumeKmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

                • Alias name: alias/ExampleAlias

                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

    • AlgorithmStatus (string) --

      The current status of the algorithm.

    • AlgorithmStatusDetails (dict) --

      Details about the current status of the algorithm.

      • ValidationStatuses (list) --

        The status of algorithm validation.

        • (dict) --

          Represents the overall status of an algorithm.

          • Name (string) --

            The name of the algorithm for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

      • ImageScanStatuses (list) --

        The status of the scan of the algorithm's Docker image container.

        • (dict) --

          Represents the overall status of an algorithm.

          • Name (string) --

            The name of the algorithm for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

    • ProductId (string) --

      The product identifier of the algorithm.

    • CertifyForMarketplace (boolean) --

      Whether the algorithm is certified to be listed in Amazon Web Services Marketplace.

DescribeEndpoint (updated) Link ¶
Changes (response)
{'PendingDeploymentSummary': {'ProductionVariants': {'InstanceType': {'ml.p5.48xlarge'}},
                              'ShadowProductionVariants': {'InstanceType': {'ml.p5.48xlarge'}}}}

Returns the description of an endpoint.

See also: AWS API Documentation

Request Syntax

client.describe_endpoint(
    EndpointName='string'
)
type EndpointName

string

param EndpointName

[REQUIRED]

The name of the endpoint.

rtype

dict

returns

Response Syntax

{
    'EndpointName': 'string',
    'EndpointArn': 'string',
    'EndpointConfigName': 'string',
    'ProductionVariants': [
        {
            'VariantName': 'string',
            'DeployedImages': [
                {
                    'SpecifiedImage': 'string',
                    'ResolvedImage': 'string',
                    'ResolutionTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentWeight': ...,
            'DesiredWeight': ...,
            'CurrentInstanceCount': 123,
            'DesiredInstanceCount': 123,
            'VariantStatus': [
                {
                    'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                    'StatusMessage': 'string',
                    'StartTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            },
            'DesiredServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            }
        },
    ],
    'DataCaptureConfig': {
        'EnableCapture': True|False,
        'CaptureStatus': 'Started'|'Stopped',
        'CurrentSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string'
    },
    'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed'|'UpdateRollbackFailed',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastDeploymentConfig': {
        'BlueGreenUpdatePolicy': {
            'TrafficRoutingConfiguration': {
                'Type': 'ALL_AT_ONCE'|'CANARY'|'LINEAR',
                'WaitIntervalInSeconds': 123,
                'CanarySize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                },
                'LinearStepSize': {
                    'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                    'Value': 123
                }
            },
            'TerminationWaitInSeconds': 123,
            'MaximumExecutionTimeoutInSeconds': 123
        },
        'AutoRollbackConfiguration': {
            'Alarms': [
                {
                    'AlarmName': 'string'
                },
            ]
        },
        'RollingUpdatePolicy': {
            'MaximumBatchSize': {
                'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                'Value': 123
            },
            'WaitIntervalInSeconds': 123,
            'MaximumExecutionTimeoutInSeconds': 123,
            'RollbackMaximumBatchSize': {
                'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT',
                'Value': 123
            }
        }
    },
    'AsyncInferenceConfig': {
        'ClientConfig': {
            'MaxConcurrentInvocationsPerInstance': 123
        },
        'OutputConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string',
            'NotificationConfig': {
                'SuccessTopic': 'string',
                'ErrorTopic': 'string',
                'IncludeInferenceResponseIn': [
                    'SUCCESS_NOTIFICATION_TOPIC'|'ERROR_NOTIFICATION_TOPIC',
                ]
            },
            'S3FailurePath': 'string'
        }
    },
    'PendingDeploymentSummary': {
        'EndpointConfigName': 'string',
        'ProductionVariants': [
            {
                'VariantName': 'string',
                'DeployedImages': [
                    {
                        'SpecifiedImage': 'string',
                        'ResolvedImage': 'string',
                        'ResolutionTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentWeight': ...,
                'DesiredWeight': ...,
                'CurrentInstanceCount': 123,
                'DesiredInstanceCount': 123,
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
                'VariantStatus': [
                    {
                        'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                        'StatusMessage': 'string',
                        'StartTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                },
                'DesiredServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                }
            },
        ],
        'StartTime': datetime(2015, 1, 1),
        'ShadowProductionVariants': [
            {
                'VariantName': 'string',
                'DeployedImages': [
                    {
                        'SpecifiedImage': 'string',
                        'ResolvedImage': 'string',
                        'ResolutionTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentWeight': ...,
                'DesiredWeight': ...,
                'CurrentInstanceCount': 123,
                'DesiredInstanceCount': 123,
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
                'VariantStatus': [
                    {
                        'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                        'StatusMessage': 'string',
                        'StartTime': datetime(2015, 1, 1)
                    },
                ],
                'CurrentServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                },
                'DesiredServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                }
            },
        ]
    },
    'ExplainerConfig': {
        'ClarifyExplainerConfig': {
            'EnableExplanations': 'string',
            'InferenceConfig': {
                'FeaturesAttribute': 'string',
                'ContentTemplate': 'string',
                'MaxRecordCount': 123,
                'MaxPayloadInMB': 123,
                'ProbabilityIndex': 123,
                'LabelIndex': 123,
                'ProbabilityAttribute': 'string',
                'LabelAttribute': 'string',
                'LabelHeaders': [
                    'string',
                ],
                'FeatureHeaders': [
                    'string',
                ],
                'FeatureTypes': [
                    'numerical'|'categorical'|'text',
                ]
            },
            'ShapConfig': {
                'ShapBaselineConfig': {
                    'MimeType': 'string',
                    'ShapBaseline': 'string',
                    'ShapBaselineUri': 'string'
                },
                'NumberOfSamples': 123,
                'UseLogit': True|False,
                'Seed': 123,
                'TextConfig': {
                    'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx',
                    'Granularity': 'token'|'sentence'|'paragraph'
                }
            }
        }
    },
    'ShadowProductionVariants': [
        {
            'VariantName': 'string',
            'DeployedImages': [
                {
                    'SpecifiedImage': 'string',
                    'ResolvedImage': 'string',
                    'ResolutionTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentWeight': ...,
            'DesiredWeight': ...,
            'CurrentInstanceCount': 123,
            'DesiredInstanceCount': 123,
            'VariantStatus': [
                {
                    'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking',
                    'StatusMessage': 'string',
                    'StartTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            },
            'DesiredServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            }
        },
    ]
}

Response Structure

  • (dict) --

    • EndpointName (string) --

      Name of the endpoint.

    • EndpointArn (string) --

      The Amazon Resource Name (ARN) of the endpoint.

    • EndpointConfigName (string) --

      The name of the endpoint configuration associated with this endpoint.

    • ProductionVariants (list) --

      An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.

      • (dict) --

        Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.

        • VariantName (string) --

          The name of the variant.

        • DeployedImages (list) --

          An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

          • (dict) --

            Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

            If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

            • SpecifiedImage (string) --

              The image path you specified when you created the model.

            • ResolvedImage (string) --

              The specific digest path of the image hosted in this ProductionVariant .

            • ResolutionTime (datetime) --

              The date and time when the image path for the model resolved to the ResolvedImage

        • CurrentWeight (float) --

          The weight associated with the variant.

        • DesiredWeight (float) --

          The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

        • CurrentInstanceCount (integer) --

          The number of instances associated with the variant.

        • DesiredInstanceCount (integer) --

          The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

        • VariantStatus (list) --

          The endpoint variant status which describes the current deployment stage status or operational status.

          • (dict) --

            Describes the status of the production variant.

            • Status (string) --

              The endpoint variant status which describes the current deployment stage status or operational status.

              • Creating : Creating inference resources for the production variant.

              • Deleting : Terminating inference resources for the production variant.

              • Updating : Updating capacity for the production variant.

              • ActivatingTraffic : Turning on traffic for the production variant.

              • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.

            • StatusMessage (string) --

              A message that describes the status of the production variant.

            • StartTime (datetime) --

              The start time of the current status change.

        • CurrentServerlessConfig (dict) --

          The serverless configuration for the endpoint.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

          • ProvisionedConcurrency (integer) --

            The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

            Note

            This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

        • DesiredServerlessConfig (dict) --

          The serverless configuration requested for the endpoint update.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

          • ProvisionedConcurrency (integer) --

            The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

            Note

            This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

    • DataCaptureConfig (dict) --

      The currently active data capture configuration used by your Endpoint.

      • EnableCapture (boolean) --

        Whether data capture is enabled or disabled.

      • CaptureStatus (string) --

        Whether data capture is currently functional.

      • CurrentSamplingPercentage (integer) --

        The percentage of requests being captured by your Endpoint.

      • DestinationS3Uri (string) --

        The Amazon S3 location being used to capture the data.

      • KmsKeyId (string) --

        The KMS key being used to encrypt the data in Amazon S3.

    • EndpointStatus (string) --

      The status of the endpoint.

      • OutOfService : Endpoint is not available to take incoming requests.

      • Creating : CreateEndpoint is executing.

      • Updating : UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.

      • SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.

      • RollingBack : Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.

      • InService : Endpoint is available to process incoming requests.

      • Deleting : DeleteEndpoint is executing.

      • Failed : Endpoint could not be created, updated, or re-scaled. Use the FailureReason value returned by DescribeEndpoint for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.

      • UpdateRollbackFailed : Both the rolling deployment and auto-rollback failed. Your endpoint is in service with a mix of the old and new endpoint configurations. For information about how to remedy this issue and restore the endpoint's status to InService , see Rolling Deployments.

    • FailureReason (string) --

      If the status of the endpoint is Failed , the reason why it failed.

    • CreationTime (datetime) --

      A timestamp that shows when the endpoint was created.

    • LastModifiedTime (datetime) --

      A timestamp that shows when the endpoint was last modified.

    • LastDeploymentConfig (dict) --

      The most recent deployment configuration for the endpoint.

      • BlueGreenUpdatePolicy (dict) --

        Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.

        • TrafficRoutingConfiguration (dict) --

          Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.

          • Type (string) --

            Traffic routing strategy type.

            • ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.

            • CANARY : Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic.

            • LINEAR : Endpoint traffic shifts to the new fleet in n steps of a configurable size.

          • WaitIntervalInSeconds (integer) --

            The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.

          • CanarySize (dict) --

            Batch size for the first step to turn on traffic on the new endpoint fleet. Value must be less than or equal to 50% of the variant's total instance count.

            • Type (string) --

              Specifies the endpoint capacity type.

              • INSTANCE_COUNT : The endpoint activates based on the number of instances.

              • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.

            • Value (integer) --

              Defines the capacity size, either as a number of instances or a capacity percentage.

          • LinearStepSize (dict) --

            Batch size for each step to turn on traffic on the new endpoint fleet. Value must be 10-50% of the variant's total instance count.

            • Type (string) --

              Specifies the endpoint capacity type.

              • INSTANCE_COUNT : The endpoint activates based on the number of instances.

              • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.

            • Value (integer) --

              Defines the capacity size, either as a number of instances or a capacity percentage.

        • TerminationWaitInSeconds (integer) --

          Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.

        • MaximumExecutionTimeoutInSeconds (integer) --

          Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in TerminationWaitInSeconds and WaitIntervalInSeconds .

      • AutoRollbackConfiguration (dict) --

        Automatic rollback configuration for handling endpoint deployment failures and recovery.

        • Alarms (list) --

          List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.

          • (dict) --

            An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.

            • AlarmName (string) --

              The name of a CloudWatch alarm in your account.

      • RollingUpdatePolicy (dict) --

        Specifies a rolling deployment strategy for updating a SageMaker endpoint.

        • MaximumBatchSize (dict) --

          Batch size for each rolling step to provision capacity and turn on traffic on the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value must be between 5% to 50% of the variant's total instance count.

          • Type (string) --

            Specifies the endpoint capacity type.

            • INSTANCE_COUNT : The endpoint activates based on the number of instances.

            • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.

          • Value (integer) --

            Defines the capacity size, either as a number of instances or a capacity percentage.

        • WaitIntervalInSeconds (integer) --

          The length of the baking period, during which SageMaker monitors alarms for each batch on the new fleet.

        • MaximumExecutionTimeoutInSeconds (integer) --

          The time limit for the total deployment. Exceeding this limit causes a timeout.

        • RollbackMaximumBatchSize (dict) --

          Batch size for rollback to the old endpoint fleet. Each rolling step to provision capacity and turn on traffic on the old endpoint fleet, and terminate capacity on the new endpoint fleet. If this field is absent, the default value will be set to 100% of total capacity which means to bring up the whole capacity of the old fleet at once during rollback.

          • Type (string) --

            Specifies the endpoint capacity type.

            • INSTANCE_COUNT : The endpoint activates based on the number of instances.

            • CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.

          • Value (integer) --

            Defines the capacity size, either as a number of instances or a capacity percentage.

    • AsyncInferenceConfig (dict) --

      Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

      • ClientConfig (dict) --

        Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

        • MaxConcurrentInvocationsPerInstance (integer) --

          The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

      • OutputConfig (dict) --

        Specifies the configuration for asynchronous inference invocation outputs.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

        • S3OutputPath (string) --

          The Amazon S3 location to upload inference responses to.

        • NotificationConfig (dict) --

          Specifies the configuration for notifications of inference results for asynchronous inference.

          • SuccessTopic (string) --

            Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

          • ErrorTopic (string) --

            Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

          • IncludeInferenceResponseIn (list) --

            The Amazon SNS topics where you want the inference response to be included.

            Note

            The inference response is included only if the response size is less than or equal to 128 KB.

            • (string) --

        • S3FailurePath (string) --

          The Amazon S3 location to upload failure inference responses to.

    • PendingDeploymentSummary (dict) --

      Returns the summary of an in-progress deployment. This field is only returned when the endpoint is creating or updating with a new endpoint configuration.

      • EndpointConfigName (string) --

        The name of the endpoint configuration used in the deployment.

      • ProductionVariants (list) --

        An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint for the in-progress deployment.

        • (dict) --

          The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.

          • VariantName (string) --

            The name of the variant.

          • DeployedImages (list) --

            An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

            • (dict) --

              Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

              If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

              • SpecifiedImage (string) --

                The image path you specified when you created the model.

              • ResolvedImage (string) --

                The specific digest path of the image hosted in this ProductionVariant .

              • ResolutionTime (datetime) --

                The date and time when the image path for the model resolved to the ResolvedImage

          • CurrentWeight (float) --

            The weight associated with the variant.

          • DesiredWeight (float) --

            The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • CurrentInstanceCount (integer) --

            The number of instances associated with the variant.

          • DesiredInstanceCount (integer) --

            The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • InstanceType (string) --

            The type of instances associated with the variant.

          • AcceleratorType (string) --

            The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

          • VariantStatus (list) --

            The endpoint variant status which describes the current deployment stage status or operational status.

            • (dict) --

              Describes the status of the production variant.

              • Status (string) --

                The endpoint variant status which describes the current deployment stage status or operational status.

                • Creating : Creating inference resources for the production variant.

                • Deleting : Terminating inference resources for the production variant.

                • Updating : Updating capacity for the production variant.

                • ActivatingTraffic : Turning on traffic for the production variant.

                • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.

              • StatusMessage (string) --

                A message that describes the status of the production variant.

              • StartTime (datetime) --

                The start time of the current status change.

          • CurrentServerlessConfig (dict) --

            The serverless configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

            • ProvisionedConcurrency (integer) --

              The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

              Note

              This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

          • DesiredServerlessConfig (dict) --

            The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

            • ProvisionedConcurrency (integer) --

              The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

              Note

              This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

      • StartTime (datetime) --

        The start time of the deployment.

      • ShadowProductionVariants (list) --

        An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants for the in-progress deployment.

        • (dict) --

          The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.

          • VariantName (string) --

            The name of the variant.

          • DeployedImages (list) --

            An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

            • (dict) --

              Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

              If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

              • SpecifiedImage (string) --

                The image path you specified when you created the model.

              • ResolvedImage (string) --

                The specific digest path of the image hosted in this ProductionVariant .

              • ResolutionTime (datetime) --

                The date and time when the image path for the model resolved to the ResolvedImage

          • CurrentWeight (float) --

            The weight associated with the variant.

          • DesiredWeight (float) --

            The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • CurrentInstanceCount (integer) --

            The number of instances associated with the variant.

          • DesiredInstanceCount (integer) --

            The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.

          • InstanceType (string) --

            The type of instances associated with the variant.

          • AcceleratorType (string) --

            The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

          • VariantStatus (list) --

            The endpoint variant status which describes the current deployment stage status or operational status.

            • (dict) --

              Describes the status of the production variant.

              • Status (string) --

                The endpoint variant status which describes the current deployment stage status or operational status.

                • Creating : Creating inference resources for the production variant.

                • Deleting : Terminating inference resources for the production variant.

                • Updating : Updating capacity for the production variant.

                • ActivatingTraffic : Turning on traffic for the production variant.

                • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.

              • StatusMessage (string) --

                A message that describes the status of the production variant.

              • StartTime (datetime) --

                The start time of the current status change.

          • CurrentServerlessConfig (dict) --

            The serverless configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

            • ProvisionedConcurrency (integer) --

              The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

              Note

              This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

          • DesiredServerlessConfig (dict) --

            The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

            • ProvisionedConcurrency (integer) --

              The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

              Note

              This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

    • ExplainerConfig (dict) --

      The configuration parameters for an explainer.

      • ClarifyExplainerConfig (dict) --

        A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

        • EnableExplanations (string) --

          A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

        • InferenceConfig (dict) --

          The inference configuration parameter for the model container.

          • FeaturesAttribute (string) --

            Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

          • ContentTemplate (string) --

            A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

          • MaxRecordCount (integer) --

            The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

          • MaxPayloadInMB (integer) --

            The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

          • ProbabilityIndex (integer) --

            A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

            Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

            Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

          • LabelIndex (integer) --

            A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

            Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .

          • ProbabilityAttribute (string) --

            A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

            Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .

          • LabelAttribute (string) --

            A JMESPath expression used to locate the list of label headers in the model container output.

            Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]

          • LabelHeaders (list) --

            For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

            • (string) --

          • FeatureHeaders (list) --

            The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --

          • FeatureTypes (list) --

            A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --

        • ShapConfig (dict) --

          The configuration for SHAP analysis.

          • ShapBaselineConfig (dict) --

            The configuration for the SHAP baseline of the Kernal SHAP algorithm.

            • MimeType (string) --

              The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

            • ShapBaseline (string) --

              The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

            • ShapBaselineUri (string) --

              The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

          • NumberOfSamples (integer) --

            The number of samples to be used for analysis by the Kernal SHAP algorithm.

            Note

            The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

          • UseLogit (boolean) --

            A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

          • Seed (integer) --

            The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

          • TextConfig (dict) --

            A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

            • Language (string) --

              Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

              Note

              For a mix of multiple languages, use code 'xx' .

            • Granularity (string) --

              The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

    • ShadowProductionVariants (list) --

      An array of ProductionVariantSummary objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .

      • (dict) --

        Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.

        • VariantName (string) --

          The name of the variant.

        • DeployedImages (list) --

          An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

          • (dict) --

            Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

            If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

            • SpecifiedImage (string) --

              The image path you specified when you created the model.

            • ResolvedImage (string) --

              The specific digest path of the image hosted in this ProductionVariant .

            • ResolutionTime (datetime) --

              The date and time when the image path for the model resolved to the ResolvedImage

        • CurrentWeight (float) --

          The weight associated with the variant.

        • DesiredWeight (float) --

          The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

        • CurrentInstanceCount (integer) --

          The number of instances associated with the variant.

        • DesiredInstanceCount (integer) --

          The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

        • VariantStatus (list) --

          The endpoint variant status which describes the current deployment stage status or operational status.

          • (dict) --

            Describes the status of the production variant.

            • Status (string) --

              The endpoint variant status which describes the current deployment stage status or operational status.

              • Creating : Creating inference resources for the production variant.

              • Deleting : Terminating inference resources for the production variant.

              • Updating : Updating capacity for the production variant.

              • ActivatingTraffic : Turning on traffic for the production variant.

              • Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.

            • StatusMessage (string) --

              A message that describes the status of the production variant.

            • StartTime (datetime) --

              The start time of the current status change.

        • CurrentServerlessConfig (dict) --

          The serverless configuration for the endpoint.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

          • ProvisionedConcurrency (integer) --

            The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

            Note

            This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

        • DesiredServerlessConfig (dict) --

          The serverless configuration requested for the endpoint update.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

          • ProvisionedConcurrency (integer) --

            The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

            Note

            This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

DescribeEndpointConfig (updated) Link ¶
Changes (response)
{'ProductionVariants': {'InstanceType': {'ml.p5.48xlarge'}},
 'ShadowProductionVariants': {'InstanceType': {'ml.p5.48xlarge'}}}

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

See also: AWS API Documentation

Request Syntax

client.describe_endpoint_config(
    EndpointConfigName='string'
)
type EndpointConfigName

string

param EndpointConfigName

[REQUIRED]

The name of the endpoint configuration.

rtype

dict

returns

Response Syntax

{
    'EndpointConfigName': 'string',
    'EndpointConfigArn': 'string',
    'ProductionVariants': [
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123,
            'EnableSSMAccess': True|False
        },
    ],
    'DataCaptureConfig': {
        'EnableCapture': True|False,
        'InitialSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'CaptureOptions': [
            {
                'CaptureMode': 'Input'|'Output'
            },
        ],
        'CaptureContentTypeHeader': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    'KmsKeyId': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'AsyncInferenceConfig': {
        'ClientConfig': {
            'MaxConcurrentInvocationsPerInstance': 123
        },
        'OutputConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string',
            'NotificationConfig': {
                'SuccessTopic': 'string',
                'ErrorTopic': 'string',
                'IncludeInferenceResponseIn': [
                    'SUCCESS_NOTIFICATION_TOPIC'|'ERROR_NOTIFICATION_TOPIC',
                ]
            },
            'S3FailurePath': 'string'
        }
    },
    'ExplainerConfig': {
        'ClarifyExplainerConfig': {
            'EnableExplanations': 'string',
            'InferenceConfig': {
                'FeaturesAttribute': 'string',
                'ContentTemplate': 'string',
                'MaxRecordCount': 123,
                'MaxPayloadInMB': 123,
                'ProbabilityIndex': 123,
                'LabelIndex': 123,
                'ProbabilityAttribute': 'string',
                'LabelAttribute': 'string',
                'LabelHeaders': [
                    'string',
                ],
                'FeatureHeaders': [
                    'string',
                ],
                'FeatureTypes': [
                    'numerical'|'categorical'|'text',
                ]
            },
            'ShapConfig': {
                'ShapBaselineConfig': {
                    'MimeType': 'string',
                    'ShapBaseline': 'string',
                    'ShapBaselineUri': 'string'
                },
                'NumberOfSamples': 123,
                'UseLogit': True|False,
                'Seed': 123,
                'TextConfig': {
                    'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx',
                    'Granularity': 'token'|'sentence'|'paragraph'
                }
            }
        }
    },
    'ShadowProductionVariants': [
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge',
            'CoreDumpConfig': {
                'DestinationS3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ServerlessConfig': {
                'MemorySizeInMB': 123,
                'MaxConcurrency': 123,
                'ProvisionedConcurrency': 123
            },
            'VolumeSizeInGB': 123,
            'ModelDataDownloadTimeoutInSeconds': 123,
            'ContainerStartupHealthCheckTimeoutInSeconds': 123,
            'EnableSSMAccess': True|False
        },
    ]
}

Response Structure

  • (dict) --

    • EndpointConfigName (string) --

      Name of the SageMaker endpoint configuration.

    • EndpointConfigArn (string) --

      The Amazon Resource Name (ARN) of the endpoint configuration.

    • ProductionVariants (list) --

      An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

      • (dict) --

        Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check Production variants.

        • VariantName (string) --

          The name of the production variant.

        • ModelName (string) --

          The name of the model that you want to host. This is the name that you specified when creating the model.

        • InitialInstanceCount (integer) --

          Number of instances to launch initially.

        • InstanceType (string) --

          The ML compute instance type.

        • InitialVariantWeight (float) --

          Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

        • AcceleratorType (string) --

          The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

        • CoreDumpConfig (dict) --

          Specifies configuration for a core dump from the model container when the process crashes.

          • DestinationS3Uri (string) --

            The Amazon S3 bucket to send the core dump to.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • ServerlessConfig (dict) --

          The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

          • ProvisionedConcurrency (integer) --

            The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

            Note

            This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

        • ModelDataDownloadTimeoutInSeconds (integer) --

          The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

        • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

          The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

        • EnableSSMAccess (boolean) --

          You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint .

    • DataCaptureConfig (dict) --

      Configuration to control how SageMaker captures inference data.

      • EnableCapture (boolean) --

        Whether data capture should be enabled or disabled (defaults to enabled).

      • InitialSamplingPercentage (integer) --

        The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.

      • DestinationS3Uri (string) --

        The Amazon S3 location used to capture the data.

      • KmsKeyId (string) --

        The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.

        The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

        • Alias name: alias/ExampleAlias

        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

      • CaptureOptions (list) --

        Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both

        • (dict) --

          Specifies data Model Monitor will capture.

          • CaptureMode (string) --

            Specify the boundary of data to capture.

      • CaptureContentTypeHeader (dict) --

        Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

        • CsvContentTypes (list) --

          The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.

          • (string) --

        • JsonContentTypes (list) --

          The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

          • (string) --

    • KmsKeyId (string) --

      Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.

    • CreationTime (datetime) --

      A timestamp that shows when the endpoint configuration was created.

    • AsyncInferenceConfig (dict) --

      Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

      • ClientConfig (dict) --

        Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

        • MaxConcurrentInvocationsPerInstance (integer) --

          The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.

      • OutputConfig (dict) --

        Specifies the configuration for asynchronous inference invocation outputs.

        • KmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

        • S3OutputPath (string) --

          The Amazon S3 location to upload inference responses to.

        • NotificationConfig (dict) --

          Specifies the configuration for notifications of inference results for asynchronous inference.

          • SuccessTopic (string) --

            Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.

          • ErrorTopic (string) --

            Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.

          • IncludeInferenceResponseIn (list) --

            The Amazon SNS topics where you want the inference response to be included.

            Note

            The inference response is included only if the response size is less than or equal to 128 KB.

            • (string) --

        • S3FailurePath (string) --

          The Amazon S3 location to upload failure inference responses to.

    • ExplainerConfig (dict) --

      The configuration parameters for an explainer.

      • ClarifyExplainerConfig (dict) --

        A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

        • EnableExplanations (string) --

          A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.

        • InferenceConfig (dict) --

          The inference configuration parameter for the model container.

          • FeaturesAttribute (string) --

            Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

          • ContentTemplate (string) --

            A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

          • MaxRecordCount (integer) --

            The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.

          • MaxPayloadInMB (integer) --

            The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

          • ProbabilityIndex (integer) --

            A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

            Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

            Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

          • LabelIndex (integer) --

            A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

            Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .

          • ProbabilityAttribute (string) --

            A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

            Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .

          • LabelAttribute (string) --

            A JMESPath expression used to locate the list of label headers in the model container output.

            Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]

          • LabelHeaders (list) --

            For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

            • (string) --

          • FeatureHeaders (list) --

            The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --

          • FeatureTypes (list) --

            A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

            • (string) --

        • ShapConfig (dict) --

          The configuration for SHAP analysis.

          • ShapBaselineConfig (dict) --

            The configuration for the SHAP baseline of the Kernal SHAP algorithm.

            • MimeType (string) --

              The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

            • ShapBaseline (string) --

              The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

            • ShapBaselineUri (string) --

              The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.

          • NumberOfSamples (integer) --

            The number of samples to be used for analysis by the Kernal SHAP algorithm.

            Note

            The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.

          • UseLogit (boolean) --

            A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

          • Seed (integer) --

            The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

          • TextConfig (dict) --

            A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

            • Language (string) --

              Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.

              Note

              For a mix of multiple languages, use code 'xx' .

            • Granularity (string) --

              The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

    • ShadowProductionVariants (list) --

      An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .

      • (dict) --

        Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check Production variants.

        • VariantName (string) --

          The name of the production variant.

        • ModelName (string) --

          The name of the model that you want to host. This is the name that you specified when creating the model.

        • InitialInstanceCount (integer) --

          Number of instances to launch initially.

        • InstanceType (string) --

          The ML compute instance type.

        • InitialVariantWeight (float) --

          Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

        • AcceleratorType (string) --

          The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

        • CoreDumpConfig (dict) --

          Specifies configuration for a core dump from the model container when the process crashes.

          • DestinationS3Uri (string) --

            The Amazon S3 bucket to send the core dump to.

          • KmsKeyId (string) --

            The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

        • ServerlessConfig (dict) --

          The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

          • MemorySizeInMB (integer) --

            The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

          • MaxConcurrency (integer) --

            The maximum number of concurrent invocations your serverless endpoint can process.

          • ProvisionedConcurrency (integer) --

            The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

            Note

            This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

        • ModelDataDownloadTimeoutInSeconds (integer) --

          The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

        • ContainerStartupHealthCheckTimeoutInSeconds (integer) --

          The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.

        • EnableSSMAccess (boolean) --

          You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint .

DescribeInferenceRecommendationsJob (updated) Link ¶
Changes (response)
{'InferenceRecommendations': {'EndpointConfiguration': {'InstanceType': {'ml.p5.48xlarge'}}},
 'InputConfig': {'EndpointConfigurations': {'InstanceType': {'ml.p5.48xlarge'}}}}

Provides the results of the Inference Recommender job. One or more recommendation jobs are returned.

See also: AWS API Documentation

Request Syntax

client.describe_inference_recommendations_job(
    JobName='string'
)
type JobName

string

param JobName

[REQUIRED]

The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

rtype

dict

returns

Response Syntax

{
    'JobName': 'string',
    'JobDescription': 'string',
    'JobType': 'Default'|'Advanced',
    'JobArn': 'string',
    'RoleArn': 'string',
    'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    'CreationTime': datetime(2015, 1, 1),
    'CompletionTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'InputConfig': {
        'ModelPackageVersionArn': 'string',
        'JobDurationInSeconds': 123,
        'TrafficPattern': {
            'TrafficType': 'PHASES'|'STAIRS',
            'Phases': [
                {
                    'InitialNumberOfUsers': 123,
                    'SpawnRate': 123,
                    'DurationInSeconds': 123
                },
            ],
            'Stairs': {
                'DurationInSeconds': 123,
                'NumberOfSteps': 123,
                'UsersPerStep': 123
            }
        },
        'ResourceLimit': {
            'MaxNumberOfTests': 123,
            'MaxParallelOfTests': 123
        },
        'EndpointConfigurations': [
            {
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                'InferenceSpecificationName': 'string',
                'EnvironmentParameterRanges': {
                    'CategoricalParameterRanges': [
                        {
                            'Name': 'string',
                            'Value': [
                                'string',
                            ]
                        },
                    ]
                },
                'ServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                }
            },
        ],
        'VolumeKmsKeyId': 'string',
        'ContainerConfig': {
            'Domain': 'string',
            'Task': 'string',
            'Framework': 'string',
            'FrameworkVersion': 'string',
            'PayloadConfig': {
                'SamplePayloadUrl': 'string',
                'SupportedContentTypes': [
                    'string',
                ]
            },
            'NearestModelName': 'string',
            'SupportedInstanceTypes': [
                'string',
            ],
            'DataInputConfig': 'string',
            'SupportedEndpointType': 'RealTime'|'Serverless',
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
        'Endpoints': [
            {
                'EndpointName': 'string'
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'ModelName': 'string'
    },
    'StoppingConditions': {
        'MaxInvocations': 123,
        'ModelLatencyThresholds': [
            {
                'Percentile': 'string',
                'ValueInMilliseconds': 123
            },
        ],
        'FlatInvocations': 'Continue'|'Stop'
    },
    'InferenceRecommendations': [
        {
            'Metrics': {
                'CostPerHour': ...,
                'CostPerInference': ...,
                'MaxInvocations': 123,
                'ModelLatency': 123,
                'CpuUtilization': ...,
                'MemoryUtilization': ...,
                'ModelSetupTime': 123
            },
            'EndpointConfiguration': {
                'EndpointName': 'string',
                'VariantName': 'string',
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                'InitialInstanceCount': 123,
                'ServerlessConfig': {
                    'MemorySizeInMB': 123,
                    'MaxConcurrency': 123,
                    'ProvisionedConcurrency': 123
                }
            },
            'ModelConfiguration': {
                'InferenceSpecificationName': 'string',
                'EnvironmentParameters': [
                    {
                        'Key': 'string',
                        'ValueType': 'string',
                        'Value': 'string'
                    },
                ],
                'CompilationJobName': 'string'
            },
            'RecommendationId': 'string',
            'InvocationEndTime': datetime(2015, 1, 1),
            'InvocationStartTime': datetime(2015, 1, 1)
        },
    ],
    'EndpointPerformances': [
        {
            'Metrics': {
                'MaxInvocations': 123,
                'ModelLatency': 123
            },
            'EndpointInfo': {
                'EndpointName': 'string'
            }
        },
    ]
}

Response Structure

  • (dict) --

    • JobName (string) --

      The name of the job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.

    • JobDescription (string) --

      The job description that you provided when you initiated the job.

    • JobType (string) --

      The job type that you provided when you initiated the job.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the job.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) role you provided when you initiated the job.

    • Status (string) --

      The status of the job.

    • CreationTime (datetime) --

      A timestamp that shows when the job was created.

    • CompletionTime (datetime) --

      A timestamp that shows when the job completed.

    • LastModifiedTime (datetime) --

      A timestamp that shows when the job was last modified.

    • FailureReason (string) --

      If the job fails, provides information why the job failed.

    • InputConfig (dict) --

      Returns information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations you provided when you initiated the job.

      • ModelPackageVersionArn (string) --

        The Amazon Resource Name (ARN) of a versioned model package.

      • JobDurationInSeconds (integer) --

        Specifies the maximum duration of the job, in seconds. The maximum value is 18,000 seconds.

      • TrafficPattern (dict) --

        Specifies the traffic pattern of the job.

        • TrafficType (string) --

          Defines the traffic patterns. Choose either PHASES or STAIRS .

        • Phases (list) --

          Defines the phases traffic specification.

          • (dict) --

            Defines the traffic pattern.

            • InitialNumberOfUsers (integer) --

              Specifies how many concurrent users to start with. The value should be between 1 and 3.

            • SpawnRate (integer) --

              Specified how many new users to spawn in a minute.

            • DurationInSeconds (integer) --

              Specifies how long a traffic phase should be. For custom load tests, the value should be between 120 and 3600. This value should not exceed JobDurationInSeconds .

        • Stairs (dict) --

          Defines the stairs traffic pattern.

          • DurationInSeconds (integer) --

            Defines how long each traffic step should be.

          • NumberOfSteps (integer) --

            Specifies how many steps to perform during traffic.

          • UsersPerStep (integer) --

            Specifies how many new users to spawn in each step.

      • ResourceLimit (dict) --

        Defines the resource limit of the job.

        • MaxNumberOfTests (integer) --

          Defines the maximum number of load tests.

        • MaxParallelOfTests (integer) --

          Defines the maximum number of parallel load tests.

      • EndpointConfigurations (list) --

        Specifies the endpoint configuration to use for a job.

        • (dict) --

          The endpoint configuration for the load test.

          • InstanceType (string) --

            The instance types to use for the load test.

          • InferenceSpecificationName (string) --

            The inference specification name in the model package version.

          • EnvironmentParameterRanges (dict) --

            The parameter you want to benchmark against.

            • CategoricalParameterRanges (list) --

              Specified a list of parameters for each category.

              • (dict) --

                Environment parameters you want to benchmark your load test against.

                • Name (string) --

                  The Name of the environment variable.

                • Value (list) --

                  The list of values you can pass.

                  • (string) --

          • ServerlessConfig (dict) --

            Specifies the serverless configuration for an endpoint variant.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

            • ProvisionedConcurrency (integer) --

              The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

              Note

              This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

      • VolumeKmsKeyId (string) --

        The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. This key will be passed to SageMaker Hosting for endpoint creation.

        The SageMaker execution role must have kms:CreateGrant permission in order to encrypt data on the storage volume of the endpoints created for inference recommendation. The inference recommendation job will fail asynchronously during endpoint configuration creation if the role passed does not have kms:CreateGrant permission.

        The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"

        • // KMS Key Alias "alias/ExampleAlias"

        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"

        For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.

      • ContainerConfig (dict) --

        Specifies mandatory fields for running an Inference Recommender job. The fields specified in ContainerConfig override the corresponding fields in the model package.

        • Domain (string) --

          The machine learning domain of the model and its components.

          Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

        • Task (string) --

          The machine learning task that the model accomplishes.

          Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

        • Framework (string) --

          The machine learning framework of the container image.

          Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

        • FrameworkVersion (string) --

          The framework version of the container image.

        • PayloadConfig (dict) --

          Specifies the SamplePayloadUrl and all other sample payload-related fields.

          • SamplePayloadUrl (string) --

            The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

          • SupportedContentTypes (list) --

            The supported MIME types for the input data.

            • (string) --

        • NearestModelName (string) --

          The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

          Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

        • SupportedInstanceTypes (list) --

          A list of the instance types that are used to generate inferences in real-time.

          • (string) --

        • DataInputConfig (string) --

          Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

        • SupportedEndpointType (string) --

          The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.

        • SupportedResponseMIMETypes (list) --

          The supported MIME types for the output data.

          • (string) --

      • Endpoints (list) --

        Existing customer endpoints on which to run an Inference Recommender job.

        • (dict) --

          Details about a customer endpoint that was compared in an Inference Recommender job.

          • EndpointName (string) --

            The name of a customer's endpoint.

      • VpcConfig (dict) --

        Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.

        • SecurityGroupIds (list) --

          The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --

        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your model.

          • (string) --

      • ModelName (string) --

        The name of the created model.

    • StoppingConditions (dict) --

      The stopping conditions that you provided when you initiated the job.

      • MaxInvocations (integer) --

        The maximum number of requests per minute expected for the endpoint.

      • ModelLatencyThresholds (list) --

        The interval of time taken by a model to respond as viewed from SageMaker. The interval includes the local communication time taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.

        • (dict) --

          The model latency threshold.

          • Percentile (string) --

            The model latency percentile threshold. Acceptable values are P95 and P99 . For custom load tests, specify the value as P95 .

          • ValueInMilliseconds (integer) --

            The model latency percentile value in milliseconds.

      • FlatInvocations (string) --

        Stops a load test when the number of invocations (TPS) peaks and flattens, which means that the instance has reached capacity. The default value is Stop . If you want the load test to continue after invocations have flattened, set the value to Continue .

    • InferenceRecommendations (list) --

      The recommendations made by Inference Recommender.

      • (dict) --

        A list of recommendations made by Amazon SageMaker Inference Recommender.

        • Metrics (dict) --

          The metrics used to decide what recommendation to make.

          • CostPerHour (float) --

            Defines the cost per hour for the instance.

          • CostPerInference (float) --

            Defines the cost per inference for the instance .

          • MaxInvocations (integer) --

            The expected maximum number of requests per minute for the instance.

          • ModelLatency (integer) --

            The expected model latency at maximum invocation per minute for the instance.

          • CpuUtilization (float) --

            The expected CPU utilization at maximum invocations per minute for the instance.

            NaN indicates that the value is not available.

          • MemoryUtilization (float) --

            The expected memory utilization at maximum invocations per minute for the instance.

            NaN indicates that the value is not available.

          • ModelSetupTime (integer) --

            The time it takes to launch new compute resources for a serverless endpoint. The time can vary depending on the model size, how long it takes to download the model, and the start-up time of the container.

            NaN indicates that the value is not available.

        • EndpointConfiguration (dict) --

          Defines the endpoint configuration parameters.

          • EndpointName (string) --

            The name of the endpoint made during a recommendation job.

          • VariantName (string) --

            The name of the production variant (deployed model) made during a recommendation job.

          • InstanceType (string) --

            The instance type recommended by Amazon SageMaker Inference Recommender.

          • InitialInstanceCount (integer) --

            The number of instances recommended to launch initially.

          • ServerlessConfig (dict) --

            Specifies the serverless configuration for an endpoint variant.

            • MemorySizeInMB (integer) --

              The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

            • MaxConcurrency (integer) --

              The maximum number of concurrent invocations your serverless endpoint can process.

            • ProvisionedConcurrency (integer) --

              The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

              Note

              This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

        • ModelConfiguration (dict) --

          Defines the model configuration.

          • InferenceSpecificationName (string) --

            The inference specification name in the model package version.

          • EnvironmentParameters (list) --

            Defines the environment parameters that includes key, value types, and values.

            • (dict) --

              A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

              • Key (string) --

                The environment key suggested by the Amazon SageMaker Inference Recommender.

              • ValueType (string) --

                The value type suggested by the Amazon SageMaker Inference Recommender.

              • Value (string) --

                The value suggested by the Amazon SageMaker Inference Recommender.

          • CompilationJobName (string) --

            The name of the compilation job used to create the recommended model artifacts.

        • RecommendationId (string) --

          The recommendation ID which uniquely identifies each recommendation.

        • InvocationEndTime (datetime) --

          A timestamp that shows when the benchmark completed.

        • InvocationStartTime (datetime) --

          A timestamp that shows when the benchmark started.

    • EndpointPerformances (list) --

      The performance results from running an Inference Recommender job on an existing endpoint.

      • (dict) --

        The performance results from running an Inference Recommender job on an existing endpoint.

        • Metrics (dict) --

          The metrics for an existing endpoint.

          • MaxInvocations (integer) --

            The expected maximum number of requests per minute for the instance.

          • ModelLatency (integer) --

            The expected model latency at maximum invocations per minute for the instance.

        • EndpointInfo (dict) --

          Details about a customer endpoint that was compared in an Inference Recommender job.

          • EndpointName (string) --

            The name of a customer's endpoint.

DescribeModel (updated) Link ¶
Changes (response)
{'DeploymentRecommendation': {'RealTimeInferenceRecommendations': {'InstanceType': {'ml.p5.48xlarge'}}}}

Describes a model that you created using the CreateModel API.

See also: AWS API Documentation

Request Syntax

client.describe_model(
    ModelName='string'
)
type ModelName

string

param ModelName

[REQUIRED]

The name of the model.

rtype

dict

returns

Response Syntax

{
    'ModelName': 'string',
    'PrimaryContainer': {
        'ContainerHostname': 'string',
        'Image': 'string',
        'ImageConfig': {
            'RepositoryAccessMode': 'Platform'|'Vpc',
            'RepositoryAuthConfig': {
                'RepositoryCredentialsProviderArn': 'string'
            }
        },
        'Mode': 'SingleModel'|'MultiModel',
        'ModelDataUrl': 'string',
        'Environment': {
            'string': 'string'
        },
        'ModelPackageName': 'string',
        'InferenceSpecificationName': 'string',
        'MultiModelConfig': {
            'ModelCacheSetting': 'Enabled'|'Disabled'
        },
        'ModelDataSource': {
            'S3DataSource': {
                'S3Uri': 'string',
                'S3DataType': 'S3Prefix'|'S3Object',
                'CompressionType': 'None'|'Gzip'
            }
        }
    },
    'Containers': [
        {
            'ContainerHostname': 'string',
            'Image': 'string',
            'ImageConfig': {
                'RepositoryAccessMode': 'Platform'|'Vpc',
                'RepositoryAuthConfig': {
                    'RepositoryCredentialsProviderArn': 'string'
                }
            },
            'Mode': 'SingleModel'|'MultiModel',
            'ModelDataUrl': 'string',
            'Environment': {
                'string': 'string'
            },
            'ModelPackageName': 'string',
            'InferenceSpecificationName': 'string',
            'MultiModelConfig': {
                'ModelCacheSetting': 'Enabled'|'Disabled'
            },
            'ModelDataSource': {
                'S3DataSource': {
                    'S3Uri': 'string',
                    'S3DataType': 'S3Prefix'|'S3Object',
                    'CompressionType': 'None'|'Gzip'
                }
            }
        },
    ],
    'InferenceExecutionConfig': {
        'Mode': 'Serial'|'Direct'
    },
    'ExecutionRoleArn': 'string',
    'VpcConfig': {
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    'CreationTime': datetime(2015, 1, 1),
    'ModelArn': 'string',
    'EnableNetworkIsolation': True|False,
    'DeploymentRecommendation': {
        'RecommendationStatus': 'IN_PROGRESS'|'COMPLETED'|'FAILED'|'NOT_APPLICABLE',
        'RealTimeInferenceRecommendations': [
            {
                'RecommendationId': 'string',
                'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                'Environment': {
                    'string': 'string'
                }
            },
        ]
    }
}

Response Structure

  • (dict) --

    • ModelName (string) --

      Name of the SageMaker model.

    • PrimaryContainer (dict) --

      The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.

      • ContainerHostname (string) --

        This parameter is ignored for models that contain only a PrimaryContainer .

        When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

      • Image (string) --

        The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        Note

        The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.

      • ImageConfig (dict) --

        Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers.

        Note

        The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.

        • RepositoryAccessMode (string) --

          Set this to one of the following values:

          • Platform - The model image is hosted in Amazon ECR.

          • Vpc - The model image is hosted in a private Docker registry in your VPC.

        • RepositoryAuthConfig (dict) --

          (Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

          • RepositoryCredentialsProviderArn (string) --

            The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide .

      • Mode (string) --

        Whether the container hosts a single model or multiple models.

      • ModelDataUrl (string) --

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

        Note

        The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

        If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

        Warning

        If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl .

      • Environment (dict) --

        The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

        • (string) --

          • (string) --

      • ModelPackageName (string) --

        The name or Amazon Resource Name (ARN) of the model package to use to create the model.

      • InferenceSpecificationName (string) --

        The inference specification name in the model package version.

      • MultiModelConfig (dict) --

        Specifies additional configuration for multi-model endpoints.

        • ModelCacheSetting (string) --

          Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled .

      • ModelDataSource (dict) --

        Specifies the location of ML model data to deploy.

        Note

        Currently you cannot use ModelDataSource in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.

        • S3DataSource (dict) --

          Specifies the S3 location of ML model data to deploy.

          • S3Uri (string) --

            Specifies the S3 path of ML model data to deploy.

          • S3DataType (string) --

            Specifies the type of ML model data to deploy.

            If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).

            If you choose S3Object , S3Uri identifies an object that is the ML model data to deploy.

          • CompressionType (string) --

            Specifies how the ML model data is prepared.

            If you choose Gzip and choose S3Object as the value of S3DataType , S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.

            If you choose None and chooose S3Object as the value of S3DataType , S3Uri identifies an object that represents an uncompressed ML model to deploy.

            If you choose None and choose S3Prefix as the value of S3DataType , S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.

            If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:

            • If you choose S3Object as the value of S3DataType , then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.

            • If you choose S3Prefix as the value of S3DataType , then for each S3 object under the key name pefix referenced by S3Uri , SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model ) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.

            • Do not use any of the following as file names or directory names:

              • An empty or blank string

              • A string which contains null bytes

              • A string longer than 255 bytes

              • A single dot ( . )

              • A double dot ( .. )

            • Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType , then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).

            • Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.

    • Containers (list) --

      The containers in the inference pipeline.

      • (dict) --

        Describes the container, as part of model definition.

        • ContainerHostname (string) --

          This parameter is ignored for models that contain only a PrimaryContainer .

          When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.

        • Image (string) --

          The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          Note

          The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.

        • ImageConfig (dict) --

          Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers.

          Note

          The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.

          • RepositoryAccessMode (string) --

            Set this to one of the following values:

            • Platform - The model image is hosted in Amazon ECR.

            • Vpc - The model image is hosted in a private Docker registry in your VPC.

          • RepositoryAuthConfig (dict) --

            (Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified Vpc as the value for the RepositoryAccessMode field, and the private Docker registry where the model image is hosted requires authentication.

            • RepositoryCredentialsProviderArn (string) --

              The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide .

        • Mode (string) --

          Whether the container hosts a single model or multiple models.

        • ModelDataUrl (string) --

          The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.

          If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide .

          Warning

          If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl .

        • Environment (dict) --

          The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

          • (string) --

            • (string) --

        • ModelPackageName (string) --

          The name or Amazon Resource Name (ARN) of the model package to use to create the model.

        • InferenceSpecificationName (string) --

          The inference specification name in the model package version.

        • MultiModelConfig (dict) --

          Specifies additional configuration for multi-model endpoints.

          • ModelCacheSetting (string) --

            Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to Disabled .

        • ModelDataSource (dict) --

          Specifies the location of ML model data to deploy.

          Note

          Currently you cannot use ModelDataSource in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.

          • S3DataSource (dict) --

            Specifies the S3 location of ML model data to deploy.

            • S3Uri (string) --

              Specifies the S3 path of ML model data to deploy.

            • S3DataType (string) --

              Specifies the type of ML model data to deploy.

              If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified by S3Uri always ends with a forward slash (/).

              If you choose S3Object , S3Uri identifies an object that is the ML model data to deploy.

            • CompressionType (string) --

              Specifies how the ML model data is prepared.

              If you choose Gzip and choose S3Object as the value of S3DataType , S3Uri identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.

              If you choose None and chooose S3Object as the value of S3DataType , S3Uri identifies an object that represents an uncompressed ML model to deploy.

              If you choose None and choose S3Prefix as the value of S3DataType , S3Uri identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.

              If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:

              • If you choose S3Object as the value of S3DataType , then SageMaker will split the key of the S3 object referenced by S3Uri by slash (/), and use the last part as the filename of the file holding the content of the S3 object.

              • If you choose S3Prefix as the value of S3DataType , then for each S3 object under the key name pefix referenced by S3Uri , SageMaker will trim its key by the prefix, and use the remainder as the path (relative to /opt/ml/model ) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.

              • Do not use any of the following as file names or directory names:

                • An empty or blank string

                • A string which contains null bytes

                • A string longer than 255 bytes

                • A single dot ( . )

                • A double dot ( .. )

              • Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value of S3DataType , then it will result in name clash between /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a directory).

              • Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.

    • InferenceExecutionConfig (dict) --

      Specifies details of how containers in a multi-container endpoint are called.

      • Mode (string) --

        How containers in a multi-container are run. The following values are valid.

        • SERIAL - Containers run as a serial pipeline.

        • DIRECT - Only the individual container that you specify is run.

    • ExecutionRoleArn (string) --

      The Amazon Resource Name (ARN) of the IAM role that you specified for the model.

    • VpcConfig (dict) --

      A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud

      • SecurityGroupIds (list) --

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --

      • Subnets (list) --

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --

    • CreationTime (datetime) --

      A timestamp that shows when the model was created.

    • ModelArn (string) --

      The Amazon Resource Name (ARN) of the model.

    • EnableNetworkIsolation (boolean) --

      If True , no inbound or outbound network calls can be made to or from the model container.

    • DeploymentRecommendation (dict) --

      A set of recommended deployment configurations for the model.

      • RecommendationStatus (string) --

        Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to provide a default recommendation for the model using the information provided. If the deployment status is IN_PROGRESS , retry your API call after a few seconds to get a COMPLETED deployment recommendation.

      • RealTimeInferenceRecommendations (list) --

        A list of RealTimeInferenceRecommendation items.

        • (dict) --

          The recommended configuration to use for Real-Time Inference.

          • RecommendationId (string) --

            The recommendation ID which uniquely identifies each recommendation.

          • InstanceType (string) --

            The recommended instance type for Real-Time Inference.

          • Environment (dict) --

            The recommended environment variables to set in the model container for Real-Time Inference.

            • (string) --

              • (string) --

DescribeModelPackage (updated) Link ¶
Changes (response)
{'AdditionalInferenceSpecifications': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}},
 'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}}}

Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.

To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.

See also: AWS API Documentation

Request Syntax

client.describe_model_package(
    ModelPackageName='string'
)
type ModelPackageName

string

param ModelPackageName

[REQUIRED]

The name or Amazon Resource Name (ARN) of the model package to describe.

When you specify a name, the name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

rtype

dict

returns

Response Syntax

{
    'ModelPackageName': 'string',
    'ModelPackageGroupName': 'string',
    'ModelPackageVersion': 123,
    'ModelPackageArn': 'string',
    'ModelPackageDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'InferenceSpecification': {
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string',
                'Environment': {
                    'string': 'string'
                },
                'ModelInput': {
                    'DataInputConfig': 'string'
                },
                'Framework': 'string',
                'FrameworkVersion': 'string',
                'NearestModelName': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    'SourceAlgorithmSpecification': {
        'SourceAlgorithms': [
            {
                'ModelDataUrl': 'string',
                'AlgorithmName': 'string'
            },
        ]
    },
    'ValidationSpecification': {
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
    'ModelPackageStatusDetails': {
        'ValidationStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ],
        'ImageScanStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ]
    },
    'CertifyForMarketplace': True|False,
    'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval',
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string',
        'IamIdentity': {
            'Arn': 'string',
            'PrincipalId': 'string',
            'SourceIdentity': 'string'
        }
    },
    'MetadataProperties': {
        'CommitId': 'string',
        'Repository': 'string',
        'GeneratedBy': 'string',
        'ProjectId': 'string'
    },
    'ModelMetrics': {
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Bias': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingReport': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Report': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string',
        'IamIdentity': {
            'Arn': 'string',
            'PrincipalId': 'string',
            'SourceIdentity': 'string'
        }
    },
    'ApprovalDescription': 'string',
    'CustomerMetadataProperties': {
        'string': 'string'
    },
    'DriftCheckBaselines': {
        'Bias': {
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PreTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'PostTrainingConstraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'Explainability': {
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'ConfigFile': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        },
        'ModelDataQuality': {
            'Statistics': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            },
            'Constraints': {
                'ContentType': 'string',
                'ContentDigest': 'string',
                'S3Uri': 'string'
            }
        }
    },
    'Domain': 'string',
    'Task': 'string',
    'SamplePayloadUrl': 'string',
    'AdditionalInferenceSpecifications': [
        {
            'Name': 'string',
            'Description': 'string',
            'Containers': [
                {
                    'ContainerHostname': 'string',
                    'Image': 'string',
                    'ImageDigest': 'string',
                    'ModelDataUrl': 'string',
                    'ProductId': 'string',
                    'Environment': {
                        'string': 'string'
                    },
                    'ModelInput': {
                        'DataInputConfig': 'string'
                    },
                    'Framework': 'string',
                    'FrameworkVersion': 'string',
                    'NearestModelName': 'string'
                },
            ],
            'SupportedTransformInstanceTypes': [
                'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            ],
            'SupportedRealtimeInferenceInstanceTypes': [
                'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            ],
            'SupportedContentTypes': [
                'string',
            ],
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
    ],
    'SkipModelValidation': 'All'|'None'
}

Response Structure

  • (dict) --

    • ModelPackageName (string) --

      The name of the model package being described.

    • ModelPackageGroupName (string) --

      If the model is a versioned model, the name of the model group that the versioned model belongs to.

    • ModelPackageVersion (integer) --

      The version of the model package.

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the model package.

    • ModelPackageDescription (string) --

      A brief summary of the model package.

    • CreationTime (datetime) --

      A timestamp specifying when the model package was created.

    • InferenceSpecification (dict) --

      Details about inference jobs that can be run with models based on this model package.

      • Containers (list) --

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) --

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same region as the model package.

          • ProductId (string) --

            The Amazon Web Services Marketplace product ID of the model package.

          • Environment (dict) --

            The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

            • (string) --

              • (string) --

          • ModelInput (dict) --

            A structure with Model Input details.

            • DataInputConfig (string) --

              The input configuration object for the model.

          • Framework (string) --

            The machine learning framework of the model package container image.

          • FrameworkVersion (string) --

            The framework version of the Model Package Container Image.

          • NearestModelName (string) --

            The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --

      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        This parameter is required for unversioned models, and optional for versioned models.

        • (string) --

      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --

      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --

    • SourceAlgorithmSpecification (dict) --

      Details about the algorithm that was used to create the model package.

      • SourceAlgorithms (list) --

        A list of the algorithms that were used to create a model package.

        • (dict) --

          Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

            Note

            The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.

          • AlgorithmName (string) --

            The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.

    • ValidationSpecification (dict) --

      Configurations for one or more transform jobs that SageMaker runs to test the model package.

      • ValidationRole (string) --

        The IAM roles to be used for the validation of the model package.

      • ValidationProfiles (list) --

        An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that SageMaker runs to validate your model package.

        • (dict) --

          Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

          The data provided in the validation profile is made available to your buyers on Amazon Web Services Marketplace.

          • ProfileName (string) --

            The name of the profile for the model package.

          • TransformJobDefinition (dict) --

            The TransformJobDefinition object that describes the transform job used for the validation of the model package.

            • MaxConcurrentTransforms (integer) --

              The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

            • MaxPayloadInMB (integer) --

              The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

            • BatchStrategy (string) --

              A string that determines the number of records included in a single mini-batch.

              SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

            • Environment (dict) --

              The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

              • (string) --

                • (string) --

            • TransformInput (dict) --

              A description of the input source and the way the transform job consumes it.

              • DataSource (dict) --

                Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) --

                    If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                    The following values are compatible: ManifestFile , S3Prefix

                    The following value is not compatible: AugmentedManifestFile

                  • S3Uri (string) --

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix .

                    • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

              • ContentType (string) --

                The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

              • CompressionType (string) --

                If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

              • SplitType (string) --

                The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:

                • RecordIO

                • TFRecord

                When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

                Note

                Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

                For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

            • TransformOutput (dict) --

              Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

              • S3OutputPath (string) --

                The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

                For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

              • Accept (string) --

                The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

              • AssembleWith (string) --

                Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

              • KmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

                • Alias name: alias/ExampleAlias

                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

                If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .

            • TransformResources (dict) --

              Identifies the ML compute instances for the transform job.

              • InstanceType (string) --

                The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

              • InstanceCount (integer) --

                The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .

              • VolumeKmsKeyId (string) --

                The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be any of the following formats:

                • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

                • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

                • Alias name: alias/ExampleAlias

                • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

    • ModelPackageStatus (string) --

      The current status of the model package.

    • ModelPackageStatusDetails (dict) --

      Details about the current status of the model package.

      • ValidationStatuses (list) --

        The validation status of the model package.

        • (dict) --

          Represents the overall status of a model package.

          • Name (string) --

            The name of the model package for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

      • ImageScanStatuses (list) --

        The status of the scan of the Docker image container for the model package.

        • (dict) --

          Represents the overall status of a model package.

          • Name (string) --

            The name of the model package for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

    • CertifyForMarketplace (boolean) --

      Whether the model package is certified for listing on Amazon Web Services Marketplace.

    • ModelApprovalStatus (string) --

      The approval status of the model package.

    • CreatedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

      • IamIdentity (dict) --

        The IAM Identity details associated with the user. These details are associated with model package groups, model packages, and project entities only.

        • Arn (string) --

          The Amazon Resource Name (ARN) of the IAM identity.

        • PrincipalId (string) --

          The ID of the principal that assumes the IAM identity.

        • SourceIdentity (string) --

          The person or application which assumes the IAM identity.

    • MetadataProperties (dict) --

      Metadata properties of the tracking entity, trial, or trial component.

      • CommitId (string) --

        The commit ID.

      • Repository (string) --

        The repository.

      • GeneratedBy (string) --

        The entity this entity was generated by.

      • ProjectId (string) --

        The project ID.

    • ModelMetrics (dict) --

      Metrics for the model.

      • ModelQuality (dict) --

        Metrics that measure the quality of a model.

        • Statistics (dict) --

          Model quality statistics.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          Model quality constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • ModelDataQuality (dict) --

        Metrics that measure the quality of the input data for a model.

        • Statistics (dict) --

          Data quality statistics for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          Data quality constraints for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • Bias (dict) --

        Metrics that measure bais in a model.

        • Report (dict) --

          The bias report for a model

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • PreTrainingReport (dict) --

          The pre-training bias report for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • PostTrainingReport (dict) --

          The post-training bias report for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • Explainability (dict) --

        Metrics that help explain a model.

        • Report (dict) --

          The explainability report for a model.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

    • LastModifiedTime (datetime) --

      The last time that the model package was modified.

    • LastModifiedBy (dict) --

      Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

      • IamIdentity (dict) --

        The IAM Identity details associated with the user. These details are associated with model package groups, model packages, and project entities only.

        • Arn (string) --

          The Amazon Resource Name (ARN) of the IAM identity.

        • PrincipalId (string) --

          The ID of the principal that assumes the IAM identity.

        • SourceIdentity (string) --

          The person or application which assumes the IAM identity.

    • ApprovalDescription (string) --

      A description provided for the model approval.

    • CustomerMetadataProperties (dict) --

      The metadata properties associated with the model package versions.

      • (string) --

        • (string) --

    • DriftCheckBaselines (dict) --

      Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide .

      • Bias (dict) --

        Represents the drift check bias baselines that can be used when the model monitor is set using the model package.

        • ConfigFile (dict) --

          The bias config file for a model.

          • ContentType (string) --

            The type of content stored in the file source.

          • ContentDigest (string) --

            The digest of the file source.

          • S3Uri (string) --

            The Amazon S3 URI for the file source.

        • PreTrainingConstraints (dict) --

          The pre-training constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • PostTrainingConstraints (dict) --

          The post-training constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • Explainability (dict) --

        Represents the drift check explainability baselines that can be used when the model monitor is set using the model package.

        • Constraints (dict) --

          The drift check explainability constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • ConfigFile (dict) --

          The explainability config file for the model.

          • ContentType (string) --

            The type of content stored in the file source.

          • ContentDigest (string) --

            The digest of the file source.

          • S3Uri (string) --

            The Amazon S3 URI for the file source.

      • ModelQuality (dict) --

        Represents the drift check model quality baselines that can be used when the model monitor is set using the model package.

        • Statistics (dict) --

          The drift check model quality statistics.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          The drift check model quality constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

      • ModelDataQuality (dict) --

        Represents the drift check model data quality baselines that can be used when the model monitor is set using the model package.

        • Statistics (dict) --

          The drift check model data quality statistics.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

        • Constraints (dict) --

          The drift check model data quality constraints.

          • ContentType (string) --

            The metric source content type.

          • ContentDigest (string) --

            The hash key used for the metrics source.

          • S3Uri (string) --

            The S3 URI for the metrics source.

    • Domain (string) --

      The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.

    • Task (string) --

      The machine learning task you specified that your model package accomplishes. Common machine learning tasks include object detection and image classification.

    • SamplePayloadUrl (string) --

      The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).

    • AdditionalInferenceSpecifications (list) --

      An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

      • (dict) --

        A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

        • Name (string) --

          A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

        • Description (string) --

          A description of the additional Inference specification

        • Containers (list) --

          The Amazon ECR registry path of the Docker image that contains the inference code.

          • (dict) --

            Describes the Docker container for the model package.

            • ContainerHostname (string) --

              The DNS host name for the Docker container.

            • Image (string) --

              The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

              If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

            • ImageDigest (string) --

              An MD5 hash of the training algorithm that identifies the Docker image used for training.

            • ModelDataUrl (string) --

              The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

              Note

              The model artifacts must be in an S3 bucket that is in the same region as the model package.

            • ProductId (string) --

              The Amazon Web Services Marketplace product ID of the model package.

            • Environment (dict) --

              The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

              • (string) --

                • (string) --

            • ModelInput (dict) --

              A structure with Model Input details.

              • DataInputConfig (string) --

                The input configuration object for the model.

            • Framework (string) --

              The machine learning framework of the model package container image.

            • FrameworkVersion (string) --

              The framework version of the Model Package Container Image.

            • NearestModelName (string) --

              The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

        • SupportedTransformInstanceTypes (list) --

          A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

          • (string) --

        • SupportedRealtimeInferenceInstanceTypes (list) --

          A list of the instance types that are used to generate inferences in real-time.

          • (string) --

        • SupportedContentTypes (list) --

          The supported MIME types for the input data.

          • (string) --

        • SupportedResponseMIMETypes (list) --

          The supported MIME types for the output data.

          • (string) --

    • SkipModelValidation (string) --

      Indicates if you want to skip model validation.

ListInferenceRecommendationsJobSteps (updated) Link ¶
Changes (response)
{'Steps': {'InferenceBenchmark': {'EndpointConfiguration': {'InstanceType': {'ml.p5.48xlarge'}}}}}

Returns a list of the subtasks for an Inference Recommender job.

The supported subtasks are benchmarks, which evaluate the performance of your model on different instance types.

See also: AWS API Documentation

Request Syntax

client.list_inference_recommendations_job_steps(
    JobName='string',
    Status='PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
    StepType='BENCHMARK',
    MaxResults=123,
    NextToken='string'
)
type JobName

string

param JobName

[REQUIRED]

The name for the Inference Recommender job.

type Status

string

param Status

A filter to return benchmarks of a specified status. If this field is left empty, then all benchmarks are returned.

type StepType

string

param StepType

A filter to return details about the specified type of subtask.

BENCHMARK : Evaluate the performance of your model on different instance types.

type MaxResults

integer

param MaxResults

The maximum number of results to return.

type NextToken

string

param NextToken

A token that you can specify to return more results from the list. Specify this field if you have a token that was returned from a previous request.

rtype

dict

returns

Response Syntax

{
    'Steps': [
        {
            'StepType': 'BENCHMARK',
            'JobName': 'string',
            'Status': 'PENDING'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOPPING'|'STOPPED',
            'InferenceBenchmark': {
                'Metrics': {
                    'CostPerHour': ...,
                    'CostPerInference': ...,
                    'MaxInvocations': 123,
                    'ModelLatency': 123,
                    'CpuUtilization': ...,
                    'MemoryUtilization': ...,
                    'ModelSetupTime': 123
                },
                'EndpointConfiguration': {
                    'EndpointName': 'string',
                    'VariantName': 'string',
                    'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
                    'InitialInstanceCount': 123,
                    'ServerlessConfig': {
                        'MemorySizeInMB': 123,
                        'MaxConcurrency': 123,
                        'ProvisionedConcurrency': 123
                    }
                },
                'ModelConfiguration': {
                    'InferenceSpecificationName': 'string',
                    'EnvironmentParameters': [
                        {
                            'Key': 'string',
                            'ValueType': 'string',
                            'Value': 'string'
                        },
                    ],
                    'CompilationJobName': 'string'
                },
                'FailureReason': 'string',
                'EndpointMetrics': {
                    'MaxInvocations': 123,
                    'ModelLatency': 123
                },
                'InvocationEndTime': datetime(2015, 1, 1),
                'InvocationStartTime': datetime(2015, 1, 1)
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Steps (list) --

      A list of all subtask details in Inference Recommender.

      • (dict) --

        A returned array object for the Steps response field in the ListInferenceRecommendationsJobSteps API command.

        • StepType (string) --

          The type of the subtask.

          BENCHMARK : Evaluate the performance of your model on different instance types.

        • JobName (string) --

          The name of the Inference Recommender job.

        • Status (string) --

          The current status of the benchmark.

        • InferenceBenchmark (dict) --

          The details for a specific benchmark.

          • Metrics (dict) --

            The metrics of recommendations.

            • CostPerHour (float) --

              Defines the cost per hour for the instance.

            • CostPerInference (float) --

              Defines the cost per inference for the instance .

            • MaxInvocations (integer) --

              The expected maximum number of requests per minute for the instance.

            • ModelLatency (integer) --

              The expected model latency at maximum invocation per minute for the instance.

            • CpuUtilization (float) --

              The expected CPU utilization at maximum invocations per minute for the instance.

              NaN indicates that the value is not available.

            • MemoryUtilization (float) --

              The expected memory utilization at maximum invocations per minute for the instance.

              NaN indicates that the value is not available.

            • ModelSetupTime (integer) --

              The time it takes to launch new compute resources for a serverless endpoint. The time can vary depending on the model size, how long it takes to download the model, and the start-up time of the container.

              NaN indicates that the value is not available.

          • EndpointConfiguration (dict) --

            The endpoint configuration made by Inference Recommender during a recommendation job.

            • EndpointName (string) --

              The name of the endpoint made during a recommendation job.

            • VariantName (string) --

              The name of the production variant (deployed model) made during a recommendation job.

            • InstanceType (string) --

              The instance type recommended by Amazon SageMaker Inference Recommender.

            • InitialInstanceCount (integer) --

              The number of instances recommended to launch initially.

            • ServerlessConfig (dict) --

              Specifies the serverless configuration for an endpoint variant.

              • MemorySizeInMB (integer) --

                The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

              • MaxConcurrency (integer) --

                The maximum number of concurrent invocations your serverless endpoint can process.

              • ProvisionedConcurrency (integer) --

                The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency .

                Note

                This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.

          • ModelConfiguration (dict) --

            Defines the model configuration. Includes the specification name and environment parameters.

            • InferenceSpecificationName (string) --

              The inference specification name in the model package version.

            • EnvironmentParameters (list) --

              Defines the environment parameters that includes key, value types, and values.

              • (dict) --

                A list of environment parameters suggested by the Amazon SageMaker Inference Recommender.

                • Key (string) --

                  The environment key suggested by the Amazon SageMaker Inference Recommender.

                • ValueType (string) --

                  The value type suggested by the Amazon SageMaker Inference Recommender.

                • Value (string) --

                  The value suggested by the Amazon SageMaker Inference Recommender.

            • CompilationJobName (string) --

              The name of the compilation job used to create the recommended model artifacts.

          • FailureReason (string) --

            The reason why a benchmark failed.

          • EndpointMetrics (dict) --

            The metrics for an existing endpoint compared in an Inference Recommender job.

            • MaxInvocations (integer) --

              The expected maximum number of requests per minute for the instance.

            • ModelLatency (integer) --

              The expected model latency at maximum invocations per minute for the instance.

          • InvocationEndTime (datetime) --

            A timestamp that shows when the benchmark completed.

          • InvocationStartTime (datetime) --

            A timestamp that shows when the benchmark started.

    • NextToken (string) --

      A token that you can specify in your next request to return more results from the list.

UpdateModelPackage (updated) Link ¶
Changes (request)
{'AdditionalInferenceSpecificationsToAdd': {'SupportedRealtimeInferenceInstanceTypes': {'ml.p5.48xlarge'}}}

Updates a versioned model.

See also: AWS API Documentation

Request Syntax

client.update_model_package(
    ModelPackageArn='string',
    ModelApprovalStatus='Approved'|'Rejected'|'PendingManualApproval',
    ApprovalDescription='string',
    CustomerMetadataProperties={
        'string': 'string'
    },
    CustomerMetadataPropertiesToRemove=[
        'string',
    ],
    AdditionalInferenceSpecificationsToAdd=[
        {
            'Name': 'string',
            'Description': 'string',
            'Containers': [
                {
                    'ContainerHostname': 'string',
                    'Image': 'string',
                    'ImageDigest': 'string',
                    'ModelDataUrl': 'string',
                    'ProductId': 'string',
                    'Environment': {
                        'string': 'string'
                    },
                    'ModelInput': {
                        'DataInputConfig': 'string'
                    },
                    'Framework': 'string',
                    'FrameworkVersion': 'string',
                    'NearestModelName': 'string'
                },
            ],
            'SupportedTransformInstanceTypes': [
                'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge',
            ],
            'SupportedRealtimeInferenceInstanceTypes': [
                'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge'|'ml.p4de.24xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge'|'ml.inf2.xlarge'|'ml.inf2.8xlarge'|'ml.inf2.24xlarge'|'ml.inf2.48xlarge'|'ml.p5.48xlarge',
            ],
            'SupportedContentTypes': [
                'string',
            ],
            'SupportedResponseMIMETypes': [
                'string',
            ]
        },
    ]
)
type ModelPackageArn

string

param ModelPackageArn

[REQUIRED]

The Amazon Resource Name (ARN) of the model package.

type ModelApprovalStatus

string

param ModelApprovalStatus

The approval status of the model.

type ApprovalDescription

string

param ApprovalDescription

A description for the approval status of the model.

type CustomerMetadataProperties

dict

param CustomerMetadataProperties

The metadata properties associated with the model package versions.

  • (string) --

    • (string) --

type CustomerMetadataPropertiesToRemove

list

param CustomerMetadataPropertiesToRemove

The metadata properties associated with the model package versions to remove.

  • (string) --

type AdditionalInferenceSpecificationsToAdd

list

param AdditionalInferenceSpecificationsToAdd

An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

  • (dict) --

    A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package

    • Name (string) -- [REQUIRED]

      A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.

    • Description (string) --

      A description of the additional Inference specification

    • Containers (list) -- [REQUIRED]

      The Amazon ECR registry path of the Docker image that contains the inference code.

      • (dict) --

        Describes the Docker container for the model package.

        • ContainerHostname (string) --

          The DNS host name for the Docker container.

        • Image (string) -- [REQUIRED]

          The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

          If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • ImageDigest (string) --

          An MD5 hash of the training algorithm that identifies the Docker image used for training.

        • ModelDataUrl (string) --

          The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          Note

          The model artifacts must be in an S3 bucket that is in the same region as the model package.

        • ProductId (string) --

          The Amazon Web Services Marketplace product ID of the model package.

        • Environment (dict) --

          The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

          • (string) --

            • (string) --

        • ModelInput (dict) --

          A structure with Model Input details.

          • DataInputConfig (string) -- [REQUIRED]

            The input configuration object for the model.

        • Framework (string) --

          The machine learning framework of the model package container image.

        • FrameworkVersion (string) --

          The framework version of the Model Package Container Image.

        • NearestModelName (string) --

          The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata .

    • SupportedTransformInstanceTypes (list) --

      A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

      • (string) --

    • SupportedRealtimeInferenceInstanceTypes (list) --

      A list of the instance types that are used to generate inferences in real-time.

      • (string) --

    • SupportedContentTypes (list) --

      The supported MIME types for the input data.

      • (string) --

    • SupportedResponseMIMETypes (list) --

      The supported MIME types for the output data.

      • (string) --

rtype

dict

returns

Response Syntax

{
    'ModelPackageArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the model.