Amazon SageMaker Service

2020/06/01 - Amazon SageMaker Service - 3 updated api methods

Changes  Update sagemaker client to latest version

CreateLabelingJob (updated) Link ¶
Changes (request)
{'HumanTaskConfig': {'UiConfig': {'HumanTaskUiArn': 'string'}}}

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.

You can select your workforce from one of three providers:

  • A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.

  • One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.

  • The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.

You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.

The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.

The output can be used as the manifest file for another labeling job or as training data for your machine learning models.

See also: AWS API Documentation

Request Syntax

client.create_labeling_job(
    LabelingJobName='string',
    LabelAttributeName='string',
    InputConfig={
        'DataSource': {
            'S3DataSource': {
                'ManifestS3Uri': 'string'
            }
        },
        'DataAttributes': {
            'ContentClassifiers': [
                'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
            ]
        }
    },
    OutputConfig={
        'S3OutputPath': 'string',
        'KmsKeyId': 'string'
    },
    RoleArn='string',
    LabelCategoryConfigS3Uri='string',
    StoppingConditions={
        'MaxHumanLabeledObjectCount': 123,
        'MaxPercentageOfInputDatasetLabeled': 123
    },
    LabelingJobAlgorithmsConfig={
        'LabelingJobAlgorithmSpecificationArn': 'string',
        'InitialActiveLearningModelArn': 'string',
        'LabelingJobResourceConfig': {
            'VolumeKmsKeyId': 'string'
        }
    },
    HumanTaskConfig={
        'WorkteamArn': 'string',
        'UiConfig': {
            'UiTemplateS3Uri': 'string',
            'HumanTaskUiArn': 'string'
        },
        'PreHumanTaskLambdaArn': 'string',
        'TaskKeywords': [
            'string',
        ],
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'NumberOfHumanWorkersPerDataObject': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'MaxConcurrentTaskCount': 123,
        'AnnotationConsolidationConfig': {
            'AnnotationConsolidationLambdaArn': 'string'
        },
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type LabelingJobName

string

param LabelingJobName

[REQUIRED]

The name of the labeling job. This name is used to identify the job in a list of labeling jobs.

type LabelAttributeName

string

param LabelAttributeName

[REQUIRED]

The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".

type InputConfig

dict

param InputConfig

[REQUIRED]

Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

  • DataSource (dict) -- [REQUIRED]

    The location of the input data.

    • S3DataSource (dict) -- [REQUIRED]

      The Amazon S3 location of the input data objects.

      • ManifestS3Uri (string) -- [REQUIRED]

        The Amazon S3 location of the manifest file that describes the input data objects.

  • DataAttributes (dict) --

    Attributes of the data specified by the customer.

    • ContentClassifiers (list) --

      Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

      • (string) --

type OutputConfig

dict

param OutputConfig

[REQUIRED]

The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.

  • S3OutputPath (string) -- [REQUIRED]

    The Amazon S3 location to write output data.

  • KmsKeyId (string) --

    The AWS Key Management Service ID of the key used to encrypt the output data, if any.

    If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for LabelingJobOutputConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

    The KMS key policy must grant permission to the IAM role that you specify in your CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.

type LabelCategoryConfigS3Uri

string

param LabelCategoryConfigS3Uri

The S3 URL of the file that defines the categories used to label the data objects.

The file is a JSON structure in the following format:

{

"document-version": "2018-11-28"

"labels": [

{

"label": "label 1"

},

{

"label": "label 2"

},

...

{

"label": "label n"

}

]

}

type StoppingConditions

dict

param StoppingConditions

A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.

  • MaxHumanLabeledObjectCount (integer) --

    The maximum number of objects that can be labeled by human workers.

  • MaxPercentageOfInputDatasetLabeled (integer) --

    The maximum number of input data objects that should be labeled.

type LabelingJobAlgorithmsConfig

dict

param LabelingJobAlgorithmsConfig

Configures the information required to perform automated data labeling.

  • LabelingJobAlgorithmSpecificationArn (string) -- [REQUIRED]

    Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

    • Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification

    • Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification

    • Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection

    • Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation

  • InitialActiveLearningModelArn (string) --

    At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

  • LabelingJobResourceConfig (dict) --

    Provides configuration information for a labeling job.

    • VolumeKmsKeyId (string) --

      The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type HumanTaskConfig

dict

param HumanTaskConfig

[REQUIRED]

Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).

  • WorkteamArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

  • UiConfig (dict) -- [REQUIRED]

    Information about the user interface that workers use to complete the labeling task.

    • UiTemplateS3Uri (string) --

      The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

    • HumanTaskUiArn (string) --

      The ARN of the worker task template used to render the worker UI and tools for labeling job tasks. Do not use this parameter if you use UiTemplateS3Uri.

  • PreHumanTaskLambdaArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

    For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:

    Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox

    Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass

    Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel

    Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation

    Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass

    Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel

    Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition

    Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox

    Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox

    Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation

    Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation

  • TaskKeywords (list) --

    Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

    • (string) --

  • TaskTitle (string) -- [REQUIRED]

    A title for the task for your human workers.

  • TaskDescription (string) -- [REQUIRED]

    A description of the task for your human workers.

  • NumberOfHumanWorkersPerDataObject (integer) -- [REQUIRED]

    The number of human workers that will label an object.

  • TaskTimeLimitInSeconds (integer) -- [REQUIRED]

    The amount of time that a worker has to complete a task.

  • TaskAvailabilityLifetimeInSeconds (integer) --

    The length of time that a task remains available for labeling by human workers. If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43200) . The default value is 864000 seconds (10 days). For private and vendor workforces, the maximum is as listed.

  • MaxConcurrentTaskCount (integer) --

    Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects.

  • AnnotationConsolidationConfig (dict) -- [REQUIRED]

    Configures how labels are consolidated across human workers.

    • AnnotationConsolidationLambdaArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation.

      For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:

      Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox

      Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass

      Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel

      Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation

      Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass

      Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel

      Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition

      Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox

      Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation

      Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox

      Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation

      For more information, see Annotation Consolidation.

  • PublicWorkforceTaskPrice (dict) --

    The price that you pay for each task performed by an Amazon Mechanical Turk worker.

    • AmountInUsd (dict) --

      Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

      • Dollars (integer) --

        The whole number of dollars in the amount.

      • Cents (integer) --

        The fractional portion, in cents, of the amount.

      • TenthFractionsOfACent (integer) --

        Fractions of a cent, in tenths.

type Tags

list

param Tags

An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'LabelingJobArn': 'string'
}

Response Structure

  • (dict) --

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.

DescribeLabelingJob (updated) Link ¶
Changes (response)
{'HumanTaskConfig': {'UiConfig': {'HumanTaskUiArn': 'string'}}}

Gets information about a labeling job.

See also: AWS API Documentation

Request Syntax

client.describe_labeling_job(
    LabelingJobName='string'
)
type LabelingJobName

string

param LabelingJobName

[REQUIRED]

The name of the labeling job to return information for.

rtype

dict

returns

Response Syntax

{
    'LabelingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'LabelCounters': {
        'TotalLabeled': 123,
        'HumanLabeled': 123,
        'MachineLabeled': 123,
        'FailedNonRetryableError': 123,
        'Unlabeled': 123
    },
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'JobReferenceCode': 'string',
    'LabelingJobName': 'string',
    'LabelingJobArn': 'string',
    'LabelAttributeName': 'string',
    'InputConfig': {
        'DataSource': {
            'S3DataSource': {
                'ManifestS3Uri': 'string'
            }
        },
        'DataAttributes': {
            'ContentClassifiers': [
                'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
            ]
        }
    },
    'OutputConfig': {
        'S3OutputPath': 'string',
        'KmsKeyId': 'string'
    },
    'RoleArn': 'string',
    'LabelCategoryConfigS3Uri': 'string',
    'StoppingConditions': {
        'MaxHumanLabeledObjectCount': 123,
        'MaxPercentageOfInputDatasetLabeled': 123
    },
    'LabelingJobAlgorithmsConfig': {
        'LabelingJobAlgorithmSpecificationArn': 'string',
        'InitialActiveLearningModelArn': 'string',
        'LabelingJobResourceConfig': {
            'VolumeKmsKeyId': 'string'
        }
    },
    'HumanTaskConfig': {
        'WorkteamArn': 'string',
        'UiConfig': {
            'UiTemplateS3Uri': 'string',
            'HumanTaskUiArn': 'string'
        },
        'PreHumanTaskLambdaArn': 'string',
        'TaskKeywords': [
            'string',
        ],
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'NumberOfHumanWorkersPerDataObject': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'MaxConcurrentTaskCount': 123,
        'AnnotationConsolidationConfig': {
            'AnnotationConsolidationLambdaArn': 'string'
        },
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    'Tags': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    'LabelingJobOutput': {
        'OutputDatasetS3Uri': 'string',
        'FinalActiveLearningModelArn': 'string'
    }
}

Response Structure

  • (dict) --

    • LabelingJobStatus (string) --

      The processing status of the labeling job.

    • LabelCounters (dict) --

      Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled.

      • TotalLabeled (integer) --

        The total number of objects labeled.

      • HumanLabeled (integer) --

        The total number of objects labeled by a human worker.

      • MachineLabeled (integer) --

        The total number of objects labeled by automated data labeling.

      • FailedNonRetryableError (integer) --

        The total number of objects that could not be labeled due to an error.

      • Unlabeled (integer) --

        The total number of objects not yet labeled.

    • FailureReason (string) --

      If the job failed, the reason that it failed.

    • CreationTime (datetime) --

      The date and time that the labeling job was created.

    • LastModifiedTime (datetime) --

      The date and time that the labeling job was last updated.

    • JobReferenceCode (string) --

      A unique identifier for work done as part of a labeling job.

    • LabelingJobName (string) --

      The name assigned to the labeling job when it was created.

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the labeling job.

    • LabelAttributeName (string) --

      The attribute used as the label in the output manifest file.

    • InputConfig (dict) --

      Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

      • DataSource (dict) --

        The location of the input data.

        • S3DataSource (dict) --

          The Amazon S3 location of the input data objects.

          • ManifestS3Uri (string) --

            The Amazon S3 location of the manifest file that describes the input data objects.

      • DataAttributes (dict) --

        Attributes of the data specified by the customer.

        • ContentClassifiers (list) --

          Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

          • (string) --

    • OutputConfig (dict) --

      The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.

      • S3OutputPath (string) --

        The Amazon S3 location to write output data.

      • KmsKeyId (string) --

        The AWS Key Management Service ID of the key used to encrypt the output data, if any.

        If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for LabelingJobOutputConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

    • RoleArn (string) --

      The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.

    • LabelCategoryConfigS3Uri (string) --

      The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits:

      • Semantic segmentation labeling jobs using automated labeling: 20 labels

      • Box bounding labeling jobs (all): 10 labels

      The file is a JSON structure in the following format:

      {

      "document-version": "2018-11-28"

      "labels": [

      {

      "label": "label 1"

      },

      {

      "label": "label 2"

      },

      ...

      {

      "label": "label n"

      }

      ]

      }

    • StoppingConditions (dict) --

      A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.

      • MaxHumanLabeledObjectCount (integer) --

        The maximum number of objects that can be labeled by human workers.

      • MaxPercentageOfInputDatasetLabeled (integer) --

        The maximum number of input data objects that should be labeled.

    • LabelingJobAlgorithmsConfig (dict) --

      Configuration information for automated data labeling.

      • LabelingJobAlgorithmSpecificationArn (string) --

        Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

        • Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification

        • Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification

        • Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection

        • Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation

      • InitialActiveLearningModelArn (string) --

        At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

      • LabelingJobResourceConfig (dict) --

        Provides configuration information for a labeling job.

        • VolumeKmsKeyId (string) --

          The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • HumanTaskConfig (dict) --

      Configuration information required for human workers to complete a labeling task.

      • WorkteamArn (string) --

        The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

      • UiConfig (dict) --

        Information about the user interface that workers use to complete the labeling task.

        • UiTemplateS3Uri (string) --

          The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

        • HumanTaskUiArn (string) --

          The ARN of the worker task template used to render the worker UI and tools for labeling job tasks. Do not use this parameter if you use UiTemplateS3Uri.

      • PreHumanTaskLambdaArn (string) --

        The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

        For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:

        Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox

        Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass

        Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel

        Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation

        Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass

        Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel

        Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition

        Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox

        Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox

        Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation

        Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation

      • TaskKeywords (list) --

        Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

        • (string) --

      • TaskTitle (string) --

        A title for the task for your human workers.

      • TaskDescription (string) --

        A description of the task for your human workers.

      • NumberOfHumanWorkersPerDataObject (integer) --

        The number of human workers that will label an object.

      • TaskTimeLimitInSeconds (integer) --

        The amount of time that a worker has to complete a task.

      • TaskAvailabilityLifetimeInSeconds (integer) --

        The length of time that a task remains available for labeling by human workers. If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43200) . The default value is 864000 seconds (10 days). For private and vendor workforces, the maximum is as listed.

      • MaxConcurrentTaskCount (integer) --

        Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects.

      • AnnotationConsolidationConfig (dict) --

        Configures how labels are consolidated across human workers.

        • AnnotationConsolidationLambdaArn (string) --

          The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation.

          For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:

          Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox

          Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass

          Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel

          Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation

          Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass

          Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel

          Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition

          Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox

          Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation

          Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox

          Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation

          For more information, see Annotation Consolidation.

      • PublicWorkforceTaskPrice (dict) --

        The price that you pay for each task performed by an Amazon Mechanical Turk worker.

        • AmountInUsd (dict) --

          Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

          • Dollars (integer) --

            The whole number of dollars in the amount.

          • Cents (integer) --

            The fractional portion, in cents, of the amount.

          • TenthFractionsOfACent (integer) --

            Fractions of a cent, in tenths.

    • Tags (list) --

      An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

      • (dict) --

        Describes a tag.

        • Key (string) --

          The tag key.

        • Value (string) --

          The tag value.

    • LabelingJobOutput (dict) --

      The location of the output produced by the labeling job.

      • OutputDatasetS3Uri (string) --

        The Amazon S3 bucket location of the manifest file for labeled data.

      • FinalActiveLearningModelArn (string) --

        The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling.

RenderUiTemplate (updated) Link ¶
Changes (request)
{'HumanTaskUiArn': 'string'}

Renders the UI template so that you can preview the worker's experience.

See also: AWS API Documentation

Request Syntax

client.render_ui_template(
    UiTemplate={
        'Content': 'string'
    },
    Task={
        'Input': 'string'
    },
    RoleArn='string',
    HumanTaskUiArn='string'
)
type UiTemplate

dict

param UiTemplate

A Template object containing the worker UI template to render.

  • Content (string) -- [REQUIRED]

    The content of the Liquid template for the worker user interface.

type Task

dict

param Task

[REQUIRED]

A RenderableTask object containing a representative task to render.

  • Input (string) -- [REQUIRED]

    A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input . For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text" .

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.

type HumanTaskUiArn

string

param HumanTaskUiArn

The HumanTaskUiArn of the worker UI that you want to render. Do not provide a HumanTaskUiArn if you use the UiTemplate parameter.

rtype

dict

returns

Response Syntax

{
    'RenderedContent': 'string',
    'Errors': [
        {
            'Code': 'string',
            'Message': 'string'
        },
    ]
}

Response Structure

  • (dict) --

    • RenderedContent (string) --

      A Liquid template that renders the HTML for the worker UI.

    • Errors (list) --

      A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.

      • (dict) --

        A description of an error that occurred while rendering the template.

        • Code (string) --

          A unique identifier for a specific class of errors.

        • Message (string) --

          A human-readable message describing the error.