2022/11/30 - Amazon SageMaker Service - 34 new 26 updated api methods
Changes Added Models as part of the Search API. Added Model shadow deployments in realtime inference, and shadow testing in managed inference. Added support for shared spaces, geospatial APIs, Model Cards, AutoMLJobStep in pipelines, Git repositories on user profiles and domains, Model sharing in Jumpstart.
Used to delete a space.
See also: AWS API Documentation
Request Syntax
client.delete_space( DomainId='string', SpaceName='string' )
string
[REQUIRED]
The ID of the associated Domain.
string
[REQUIRED]
The name of the space.
None
Updates an inference experiment that you created. The status of the inference experiment has to be either Created , Running . For more information on the status of an inference experiment, see DescribeInferenceExperimentResponse$Status.
See also: AWS API Documentation
Request Syntax
client.update_inference_experiment( Name='string', Schedule={ 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, Description='string', ModelVariants=[ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'InstanceCount': 123 } } }, ], DataStorageConfig={ 'Destination': 'string', 'KmsKey': 'string', 'ContentType': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, ShadowModeConfig={ 'SourceModelVariantName': 'string', 'ShadowModelVariants': [ { 'ShadowModelVariantName': 'string', 'SamplingPercentage': 123 }, ] } )
string
[REQUIRED]
The name of the inference experiment to be updated.
dict
The duration for which the inference experiment will run. If the status of the inference experiment is Created , then you can update both the start and end dates. If the status of the inference experiment is Running , then you can update only the end date.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
string
The description of the inference experiment.
list
Array of ModelVariantConfigSummary objects. There is one for each variant, whose infrastructure configuration you want to update.
(dict) --
Contains information about the deployment options of a model.
ModelName (string) -- [REQUIRED]
The name of the model.
VariantName (string) -- [REQUIRED]
The name of the variant.
InfrastructureConfig (dict) -- [REQUIRED]
The configuration for the infrastructure that the model will be deployed to.
InfrastructureType (string) -- [REQUIRED]
The inference option to which to deploy your model. Possible values are the following:
RealTime : Deploy to real-time inference.
RealTimeInferenceConfig (dict) -- [REQUIRED]
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) -- [REQUIRED]
The number of instances of the type specified by InstanceType .
InstanceCount (integer) -- [REQUIRED]
The instance type the model is deployed to.
dict
The Amazon S3 storage configuration for the inference experiment.
Destination (string) -- [REQUIRED]
The Amazon S3 bucket where the inference experiment data is stored.
KmsKey (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data when uploading to Amazon S3.
ContentType (dict) --
Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
dict
The Amazon S3 storage configuration for the inference experiment.
SourceModelVariantName (string) -- [REQUIRED]
The name of the production variant.
ShadowModelVariants (list) -- [REQUIRED]
List of shadow variant configurations.
(dict) --
The name and sampling percentage of a shadow variant.
ShadowModelVariantName (string) -- [REQUIRED]
The name of the shadow variant.
SamplingPercentage (integer) -- [REQUIRED]
The percentage of inference requests that are replicated to the shadow variant.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN of the updated inference experiment.
Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.
See also: AWS API Documentation
Request Syntax
client.describe_model_card( ModelCardName='string', ModelCardVersion=123 )
string
[REQUIRED]
The name of the model card to describe.
integer
The version of the model card to describe. If a version is not provided, then the latest version of the model card is described.
dict
Response Syntax
{ 'ModelCardArn': 'string', 'ModelCardName': 'string', 'ModelCardVersion': 123, 'Content': 'string', 'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived', 'SecurityConfig': { 'KmsKeyId': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'ModelCardProcessingStatus': 'DeleteInProgress'|'DeletePending'|'ContentDeleted'|'ExportJobsDeleted'|'DeleteCompleted'|'DeleteFailed' }
Response Structure
(dict) --
ModelCardArn (string) --
The Amazon Resource Name (ARN) of the model card.
ModelCardName (string) --
The name of the model card.
ModelCardVersion (integer) --
The version of the model card.
Content (string) --
The content of the model card.
ModelCardStatus (string) --
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft : The model card is a work in progress.
PendingReview : The model card is pending review.
Approved : The model card is approved.
Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
SecurityConfig (dict) --
The security configuration used to protect model card content.
KmsKeyId (string) --
A Key Management Service key ID to use for encrypting a model card.
CreationTime (datetime) --
The date and time the model card was created.
CreatedBy (dict) --
Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
UserProfileArn (string) --
The Amazon Resource Name (ARN) of the user's profile.
UserProfileName (string) --
The name of the user's profile.
DomainId (string) --
The domain associated with the user.
LastModifiedTime (datetime) --
The date and time the model card was last modified.
LastModifiedBy (dict) --
Information about the user who created or modified an experiment, trial, trial component, lineage group, project, or model card.
UserProfileArn (string) --
The Amazon Resource Name (ARN) of the user's profile.
UserProfileName (string) --
The name of the user's profile.
DomainId (string) --
The domain associated with the user.
ModelCardProcessingStatus (string) --
The processing status of model card deletion. The ModelCardProcessingStatus updates throughout the different deletion steps.
DeletePending : Model card deletion request received.
DeleteInProgress : Model card deletion is in progress.
ContentDeleted : Deleted model card content.
ExportJobsDeleted : Deleted all export jobs associated with the model card.
DeleteCompleted : Successfully deleted the model card.
DeleteFailed : The model card failed to delete.
Create a hub.
See also: AWS API Documentation
Request Syntax
client.create_hub( HubName='string', HubDescription='string', HubDisplayName='string', HubSearchKeywords=[ 'string', ], S3StorageConfig={ 'S3OutputPath': 'string' }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name of the hub to create.
string
[REQUIRED]
A description of the hub.
string
The display name of the hub.
list
The searchable keywords for the hub.
(string) --
dict
The Amazon S3 storage configuration for the hub.
S3OutputPath (string) --
The Amazon S3 output path for the hub.
list
Any tags to associate with the hub.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'HubArn': 'string' }
Response Structure
(dict) --
HubArn (string) --
The Amazon Resource Name (ARN) of the hub.
List the export jobs for the Amazon SageMaker Model Card.
See also: AWS API Documentation
Request Syntax
client.list_model_card_export_jobs( ModelCardName='string', ModelCardVersion=123, CreationTimeAfter=datetime(2015, 1, 1), CreationTimeBefore=datetime(2015, 1, 1), ModelCardExportJobNameContains='string', StatusEquals='InProgress'|'Completed'|'Failed', SortBy='Name'|'CreationTime'|'Status', SortOrder='Ascending'|'Descending', NextToken='string', MaxResults=123 )
string
[REQUIRED]
List export jobs for the model card with the specified name.
integer
List export jobs for the model card with the specified version.
datetime
Only list model card export jobs that were created after the time specified.
datetime
Only list model card export jobs that were created before the time specified.
string
Only list model card export jobs with names that contain the specified string.
string
Only list model card export jobs with the specified status.
string
Sort model card export jobs by either name or creation time. Sorts by creation time by default.
string
Sort model card export jobs by ascending or descending order.
string
If the response to a previous ListModelCardExportJobs request was truncated, the response includes a NextToken . To retrieve the next set of model card export jobs, use the token in the next request.
integer
The maximum number of model card export jobs to list.
dict
Response Syntax
{ 'ModelCardExportJobSummaries': [ { 'ModelCardExportJobName': 'string', 'ModelCardExportJobArn': 'string', 'Status': 'InProgress'|'Completed'|'Failed', 'ModelCardName': 'string', 'ModelCardVersion': 123, 'CreatedAt': datetime(2015, 1, 1), 'LastModifiedAt': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
ModelCardExportJobSummaries (list) --
The summaries of the listed model card export jobs.
(dict) --
The summary of the Amazon SageMaker Model Card export job.
ModelCardExportJobName (string) --
The name of the model card export job.
ModelCardExportJobArn (string) --
The Amazon Resource Name (ARN) of the model card export job.
Status (string) --
The completion status of the model card export job.
ModelCardName (string) --
The name of the model card that the export job exports.
ModelCardVersion (integer) --
The version of the model card that the export job exports.
CreatedAt (datetime) --
The date and time that the model card export job was created.
LastModifiedAt (datetime) --
The date and time that the model card export job was last modified..
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of model card export jobs, use it in the subsequent request.
Update the parameters of a model monitor alert.
See also: AWS API Documentation
Request Syntax
client.update_monitoring_alert( MonitoringScheduleName='string', MonitoringAlertName='string', DatapointsToAlert=123, EvaluationPeriod=123 )
string
[REQUIRED]
The name of a monitoring schedule.
string
[REQUIRED]
The name of a monitoring alert.
integer
[REQUIRED]
Within EvaluationPeriod , how many execution failures will raise an alert.
integer
[REQUIRED]
The number of most recent monitoring executions to consider when evaluating alert status.
dict
Response Syntax
{ 'MonitoringScheduleArn': 'string', 'MonitoringAlertName': 'string' }
Response Structure
(dict) --
MonitoringScheduleArn (string) --
The Amazon Resource Name (ARN) of the monitoring schedule.
MonitoringAlertName (string) --
The name of a monitoring alert.
Returns details about an inference experiment.
See also: AWS API Documentation
Request Syntax
client.describe_inference_experiment( Name='string' )
string
[REQUIRED]
The name of the inference experiment to describe.
dict
Response Syntax
{ 'Arn': 'string', 'Name': 'string', 'Type': 'ShadowMode', 'Schedule': { 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, 'Status': 'Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled', 'StatusReason': 'string', 'Description': 'string', 'CreationTime': datetime(2015, 1, 1), 'CompletionTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'RoleArn': 'string', 'EndpointMetadata': { 'EndpointName': 'string', 'EndpointConfigName': 'string', 'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed', 'FailureReason': 'string' }, 'ModelVariants': [ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'InstanceCount': 123 } }, 'Status': 'Creating'|'Updating'|'InService'|'Deleting'|'Deleted' }, ], 'DataStorageConfig': { 'Destination': 'string', 'KmsKey': 'string', 'ContentType': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, 'ShadowModeConfig': { 'SourceModelVariantName': 'string', 'ShadowModelVariants': [ { 'ShadowModelVariantName': 'string', 'SamplingPercentage': 123 }, ] }, 'KmsKey': 'string' }
Response Structure
(dict) --
Arn (string) --
The ARN of the inference experiment being described.
Name (string) --
The name of the inference experiment.
Type (string) --
The type of the inference experiment.
Schedule (dict) --
The duration for which the inference experiment ran or will run.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
Status (string) --
The status of the inference experiment. The following are the possible statuses for an inference experiment:
Creating - Amazon SageMaker is creating your experiment.
Created - Amazon SageMaker has finished creating your experiment and it will begin at the scheduled time.
Updating - When you make changes to your experiment, your experiment shows as updating.
Starting - Amazon SageMaker is beginning your experiment.
Running - Your experiment is in progress.
Stopping - Amazon SageMaker is stopping your experiment.
Completed - Your experiment has completed.
Cancelled - When you conclude your experiment early, it shows as canceled.
StatusReason (string) --
The error message for the inference experiment status result.
Description (string) --
The description of the inference experiment.
CreationTime (datetime) --
The timestamp at which you created the inference experiment.
CompletionTime (datetime) --
The timestamp at which the inference experiment was completed or will complete.
LastModifiedTime (datetime) --
The timestamp at which you last modified the inference experiment.
RoleArn (string) --
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images.
EndpointMetadata (dict) --
The metadata of the endpoint on which the inference experiment ran.
EndpointName (string) --
The name of the endpoint.
EndpointConfigName (string) --
The name of the endpoint configuration.
EndpointStatus (string) --
The status of the endpoint. For possible values of the status of an endpoint, see EndpointSummary$EndpointStatus.
FailureReason (string) --
If the status of the endpoint is Failed , this provides the reason why it failed.
ModelVariants (list) --
Array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.
(dict) --
Summary of the deployment configuration of a model.
ModelName (string) --
The name of the model.
VariantName (string) --
The name of the variant.
InfrastructureConfig (dict) --
The configuration of the infrastructure that the model has been deployed to.
InfrastructureType (string) --
The inference option to which to deploy your model. Possible values are the following:
RealTime : Deploy to real-time inference.
RealTimeInferenceConfig (dict) --
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) --
The number of instances of the type specified by InstanceType .
InstanceCount (integer) --
The instance type the model is deployed to.
Status (string) --
The status of the deployment.
DataStorageConfig (dict) --
The Amazon S3 storage configuration for the inference experiment.
Destination (string) --
The Amazon S3 bucket where the inference experiment data is stored.
KmsKey (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data when uploading to Amazon S3.
ContentType (dict) --
Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
ShadowModeConfig (dict) --
Shows which variant is a production variant and which variant is a shadow variant. For shadow variants, also shows the sampling percentage.
SourceModelVariantName (string) --
The name of the production variant.
ShadowModelVariants (list) --
List of shadow variant configurations.
(dict) --
The name and sampling percentage of a shadow variant.
ShadowModelVariantName (string) --
The name of the shadow variant.
SamplingPercentage (integer) --
The percentage of inference requests that are replicated to the shadow variant.
KmsKey (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperimentRequest$KmsKey.
Gets a list of past alerts in a model monitoring schedule.
See also: AWS API Documentation
Request Syntax
client.list_monitoring_alert_history( MonitoringScheduleName='string', MonitoringAlertName='string', SortBy='CreationTime'|'Status', SortOrder='Ascending'|'Descending', NextToken='string', MaxResults=123, CreationTimeBefore=datetime(2015, 1, 1), CreationTimeAfter=datetime(2015, 1, 1), StatusEquals='InAlert'|'OK' )
string
The name of a monitoring schedule.
string
The name of a monitoring alert.
string
The field used to sort results. The default is CreationTime .
string
The sort order, whether Ascending or Descending , of the alert history. The default is Descending .
string
If the result of the previous ListMonitoringAlertHistory request was truncated, the response includes a NextToken . To retrieve the next set of alerts in the history, use the token in the next request.
integer
The maximum number of results to display. The default is 100.
datetime
A filter that returns only alerts created on or before the specified time.
datetime
A filter that returns only alerts created on or after the specified time.
string
A filter that retrieves only alerts with a specific status.
dict
Response Syntax
{ 'MonitoringAlertHistory': [ { 'MonitoringScheduleName': 'string', 'MonitoringAlertName': 'string', 'CreationTime': datetime(2015, 1, 1), 'AlertStatus': 'InAlert'|'OK' }, ], 'NextToken': 'string' }
Response Structure
(dict) --
MonitoringAlertHistory (list) --
An alert history for a model monitoring schedule.
(dict) --
Provides summary information of an alert's history.
MonitoringScheduleName (string) --
The name of a monitoring schedule.
MonitoringAlertName (string) --
The name of a monitoring alert.
CreationTime (datetime) --
A timestamp that indicates when the first alert transition occurred in an alert history. An alert transition can be from status InAlert to OK , or from OK to InAlert .
AlertStatus (string) --
The current alert status of an alert.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.
Returns the list of all inference experiments.
See also: AWS API Documentation
Request Syntax
client.list_inference_experiments( NameContains='string', Type='ShadowMode', StatusEquals='Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled', CreationTimeAfter=datetime(2015, 1, 1), CreationTimeBefore=datetime(2015, 1, 1), LastModifiedTimeAfter=datetime(2015, 1, 1), LastModifiedTimeBefore=datetime(2015, 1, 1), SortBy='Name'|'CreationTime'|'Status', SortOrder='Ascending'|'Descending', NextToken='string', MaxResults=123 )
string
Selects inference experiments whose names contain this name.
string
Selects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperimentRequest$Type.
string
Selects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperimentResponse$Status.
datetime
Selects inference experiments which were created after this timestamp.
datetime
Selects inference experiments which were created before this timestamp.
datetime
Selects inference experiments which were last modified after this timestamp.
datetime
Selects inference experiments which were last modified before this timestamp.
string
The column by which to sort the listed inference experiments.
string
The direction of sorting (ascending or descending).
string
The response from the last list when returning a list large enough to need tokening.
integer
The maximum number of results to select.
dict
Response Syntax
{ 'InferenceExperiments': [ { 'Name': 'string', 'Type': 'ShadowMode', 'Schedule': { 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, 'Status': 'Creating'|'Created'|'Updating'|'Running'|'Starting'|'Stopping'|'Completed'|'Cancelled', 'StatusReason': 'string', 'Description': 'string', 'CreationTime': datetime(2015, 1, 1), 'CompletionTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'RoleArn': 'string' }, ], 'NextToken': 'string' }
Response Structure
(dict) --
InferenceExperiments (list) --
List of inference experiments.
(dict) --
Lists a summary of properties of an inference experiment.
Name (string) --
The name of the inference experiment.
Type (string) --
The type of the inference experiment.
Schedule (dict) --
The duration for which the inference experiment ran or will run.
The maximum duration that you can set for an inference experiment is 30 days.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
Status (string) --
The status of the inference experiment.
StatusReason (string) --
The error message for the inference experiment status result.
Description (string) --
The description of the inference experiment.
CreationTime (datetime) --
The timestamp at which the inference experiment was created.
CompletionTime (datetime) --
The timestamp at which the inference experiment was completed.
LastModifiedTime (datetime) --
The timestamp when you last modified the inference experiment.
RoleArn (string) --
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images.
NextToken (string) --
The token to use when calling the next page of results.
Update a hub.
See also: AWS API Documentation
Request Syntax
client.update_hub( HubName='string', HubDescription='string', HubDisplayName='string', HubSearchKeywords=[ 'string', ] )
string
[REQUIRED]
The name of the hub to update.
string
A description of the updated hub.
string
The display name of the hub.
list
The searchable keywords for the hub.
(string) --
dict
Response Syntax
{ 'HubArn': 'string' }
Response Structure
(dict) --
HubArn (string) --
The Amazon Resource Name (ARN) of the updated hub.
Delete the contents of a hub.
See also: AWS API Documentation
Request Syntax
client.delete_hub_content( HubName='string', HubContentType='Model'|'Notebook', HubContentName='string', HubContentVersion='string' )
string
[REQUIRED]
The name of the hub that you want to delete content in.
string
[REQUIRED]
The type of content that you want to delete from a hub.
string
[REQUIRED]
The name of the content that you want to delete from a hub.
string
[REQUIRED]
The version of the content that you want to delete from a hub.
None
Creates an inference experiment using the configurations specified in the request.
Use this API to schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.
Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.
While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
See also: AWS API Documentation
Request Syntax
client.create_inference_experiment( Name='string', Type='ShadowMode', Schedule={ 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1) }, Description='string', RoleArn='string', EndpointName='string', ModelVariants=[ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'InstanceCount': 123 } } }, ], DataStorageConfig={ 'Destination': 'string', 'KmsKey': 'string', 'ContentType': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, ShadowModeConfig={ 'SourceModelVariantName': 'string', 'ShadowModelVariants': [ { 'ShadowModelVariantName': 'string', 'SamplingPercentage': 123 }, ] }, KmsKey='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name for the inference experiment.
string
[REQUIRED]
The type of the inference experiment that you want to run. The following types of experiments are possible:
ShadowMode : You can use this type to validate a shadow variant. For more information, see Shadow tests.
dict
The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically concludes after 7 days.
StartTime (datetime) --
The timestamp at which the inference experiment started or will start.
EndTime (datetime) --
The timestamp at which the inference experiment ended or will end.
string
A description for the inference experiment.
string
[REQUIRED]
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images.
string
[REQUIRED]
The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.
list
[REQUIRED]
Array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for the corresponding variant.
(dict) --
Contains information about the deployment options of a model.
ModelName (string) -- [REQUIRED]
The name of the model.
VariantName (string) -- [REQUIRED]
The name of the variant.
InfrastructureConfig (dict) -- [REQUIRED]
The configuration for the infrastructure that the model will be deployed to.
InfrastructureType (string) -- [REQUIRED]
The inference option to which to deploy your model. Possible values are the following:
RealTime : Deploy to real-time inference.
RealTimeInferenceConfig (dict) -- [REQUIRED]
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) -- [REQUIRED]
The number of instances of the type specified by InstanceType .
InstanceCount (integer) -- [REQUIRED]
The instance type the model is deployed to.
dict
The storage configuration for the inference experiment. This is an optional parameter that you can use for data capture. For more information, see Capture data.
Destination (string) -- [REQUIRED]
The Amazon S3 bucket where the inference experiment data is stored.
KmsKey (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data when uploading to Amazon S3.
ContentType (dict) --
Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
dict
[REQUIRED]
Shows which variant is the production variant and which variant is the shadow variant. For the shadow variant, also shows the sampling percentage.
SourceModelVariantName (string) -- [REQUIRED]
The name of the production variant.
ShadowModelVariants (list) -- [REQUIRED]
List of shadow variant configurations.
(dict) --
The name and sampling percentage of a shadow variant.
ShadowModelVariantName (string) -- [REQUIRED]
The name of the shadow variant.
SamplingPercentage (integer) -- [REQUIRED]
The percentage of inference requests that are replicated to the shadow variant.
string
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKey can be any of the following formats:
KMS key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
Amazon Resource Name (ARN) of a KMS key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
KMS key Alias "alias/ExampleAlias"
Amazon Resource Name (ARN) of a KMS key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
list
Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN for your inference experiment.
Describes the space.
See also: AWS API Documentation
Request Syntax
client.describe_space( DomainId='string', SpaceName='string' )
string
[REQUIRED]
The ID of the associated Domain.
string
[REQUIRED]
The name of the space.
dict
Response Syntax
{ 'DomainId': 'string', 'SpaceArn': 'string', 'SpaceName': 'string', 'HomeEfsFileSystemUid': 'string', 'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed', 'LastModifiedTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'FailureReason': 'string', 'SpaceSettings': { 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] } } }
Response Structure
(dict) --
DomainId (string) --
The ID of the associated Domain.
SpaceArn (string) --
The space's Amazon Resource Name (ARN).
SpaceName (string) --
The name of the space.
HomeEfsFileSystemUid (string) --
The ID of the space's profile in the Amazon Elastic File System volume.
Status (string) --
The status.
LastModifiedTime (datetime) --
The last modified time.
CreationTime (datetime) --
The creation time.
FailureReason (string) --
The failure reason.
SpaceSettings (dict) --
A collection of space settings.
JupyterServerAppSettings (dict) --
The JupyterServer app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) --
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The KernelGateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) --
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) --
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
Starts an inference experiment.
See also: AWS API Documentation
Request Syntax
client.start_inference_experiment( Name='string' )
string
[REQUIRED]
The name of the inference experiment to start.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN of the started inference experiment to start.
List hub content versions.
See also: AWS API Documentation
Request Syntax
client.list_hub_content_versions( HubName='string', HubContentType='Model'|'Notebook', HubContentName='string', MinVersion='string', MaxSchemaVersion='string', CreationTimeBefore=datetime(2015, 1, 1), CreationTimeAfter=datetime(2015, 1, 1), SortBy='HubContentName'|'CreationTime'|'HubContentStatus', SortOrder='Ascending'|'Descending', MaxResults=123, NextToken='string' )
string
[REQUIRED]
The name of the hub to list the content versions of.
string
[REQUIRED]
The type of hub content to list versions of.
string
[REQUIRED]
The name of the hub content.
string
The lower bound of the hub content versions to list.
string
The upper bound of the hub content schema version.
datetime
Only list hub content versions that were created before the time specified.
datetime
Only list hub content versions that were created after the time specified.
string
Sort hub content versions by either name or creation time.
string
Sort hub content versions by ascending or descending order.
integer
The maximum number of hub content versions to list.
string
If the response to a previous ListHubContentVersions request was truncated, the response includes a NextToken . To retrieve the next set of hub content versions, use the token in the next request.
dict
Response Syntax
{ 'HubContentSummaries': [ { 'HubContentName': 'string', 'HubContentArn': 'string', 'HubContentVersion': 'string', 'HubContentType': 'Model'|'Notebook', 'DocumentSchemaVersion': 'string', 'HubContentDisplayName': 'string', 'HubContentDescription': 'string', 'HubContentSearchKeywords': [ 'string', ], 'HubContentStatus': 'Available'|'Importing'|'Deleting'|'ImportFailed'|'DeleteFailed', 'CreationTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
HubContentSummaries (list) --
The summaries of the listed hub content versions.
(dict) --
Information about hub content.
HubContentName (string) --
The name of the hub content.
HubContentArn (string) --
The Amazon Resource Name (ARN) of the hub content.
HubContentVersion (string) --
The version of the hub content.
HubContentType (string) --
The type of hub content.
DocumentSchemaVersion (string) --
The version of the hub content document schema.
HubContentDisplayName (string) --
The display name of the hub content.
HubContentDescription (string) --
A description of the hub content.
HubContentSearchKeywords (list) --
The searchable keywords for the hub content.
(string) --
HubContentStatus (string) --
The status of the hub content.
CreationTime (datetime) --
The date and time that the hub content was created.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content versions, use it in the subsequent request.
Stops an inference experiment.
See also: AWS API Documentation
Request Syntax
client.stop_inference_experiment( Name='string', ModelVariantActions={ 'string': 'Retain'|'Remove'|'Promote' }, DesiredModelVariants=[ { 'ModelName': 'string', 'VariantName': 'string', 'InfrastructureConfig': { 'InfrastructureType': 'RealTimeInference', 'RealTimeInferenceConfig': { 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'InstanceCount': 123 } } }, ], DesiredState='Completed'|'Cancelled', Reason='string' )
string
[REQUIRED]
The name of the inference experiment to stop.
dict
[REQUIRED]
Array of key-value pairs, with names of variants mapped to actions. The possible actions are the following:
Promote - Promote the shadow variant to a production variant
Remove - Delete the variant
Retain - Keep the variant as it is
(string) --
(string) --
list
Array of ModelVariantConfig objects. There is one for each variant that you want to deploy after the inference experiment stops. Each ModelVariantConfig describes the infrastructure configuration for deploying the corresponding variant.
(dict) --
Contains information about the deployment options of a model.
ModelName (string) -- [REQUIRED]
The name of the model.
VariantName (string) -- [REQUIRED]
The name of the variant.
InfrastructureConfig (dict) -- [REQUIRED]
The configuration for the infrastructure that the model will be deployed to.
InfrastructureType (string) -- [REQUIRED]
The inference option to which to deploy your model. Possible values are the following:
RealTime : Deploy to real-time inference.
RealTimeInferenceConfig (dict) -- [REQUIRED]
The infrastructure configuration for deploying the model to real-time inference.
InstanceType (string) -- [REQUIRED]
The number of instances of the type specified by InstanceType .
InstanceCount (integer) -- [REQUIRED]
The instance type the model is deployed to.
string
The desired state of the experiment after stopping. The possible states are the following:
Completed : The experiment completed successfully
Cancelled : The experiment was canceled
string
The reason for stopping the experiment.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN of the stopped inference experiment.
List existing versions of an Amazon SageMaker Model Card.
See also: AWS API Documentation
Request Syntax
client.list_model_card_versions( CreationTimeAfter=datetime(2015, 1, 1), CreationTimeBefore=datetime(2015, 1, 1), MaxResults=123, ModelCardName='string', ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived', NextToken='string', SortBy='Version', SortOrder='Ascending'|'Descending' )
datetime
Only list model card versions that were created after the time specified.
datetime
Only list model card versions that were created before the time specified.
integer
The maximum number of model card versions to list.
string
[REQUIRED]
List model card versions for the model card with the specified name.
string
Only list model card versions with the specified approval status.
string
If the response to a previous ListModelCardVersions request was truncated, the response includes a NextToken . To retrieve the next set of model card versions, use the token in the next request.
string
Sort listed model card versions by version. Sorts by version by default.
string
Sort model card versions by ascending or descending order.
dict
Response Syntax
{ 'ModelCardVersionSummaryList': [ { 'ModelCardName': 'string', 'ModelCardArn': 'string', 'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived', 'ModelCardVersion': 123, 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
ModelCardVersionSummaryList (list) --
The summaries of the listed versions of the model card.
(dict) --
A summary of a specific version of the model card.
ModelCardName (string) --
The name of the model card.
ModelCardArn (string) --
The Amazon Resource Name (ARN) of the model card.
ModelCardStatus (string) --
The approval status of the model card version within your organization. Different organizations might have different criteria for model card review and approval.
Draft : The model card is a work in progress.
PendingReview : The model card is pending review.
Approved : The model card is approved.
Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
ModelCardVersion (integer) --
A version of the model card.
CreationTime (datetime) --
The date and time that the model card version was created.
LastModifiedTime (datetime) --
The time date and time that the model card version was last modified.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of model card versions, use it in the subsequent request.
Delete a hub.
See also: AWS API Documentation
Request Syntax
client.delete_hub( HubName='string' )
string
[REQUIRED]
The name of the hub to delete.
None
List the contents of a hub.
See also: AWS API Documentation
Request Syntax
client.list_hub_contents( HubName='string', HubContentType='Model'|'Notebook', NameContains='string', MaxSchemaVersion='string', CreationTimeBefore=datetime(2015, 1, 1), CreationTimeAfter=datetime(2015, 1, 1), SortBy='HubContentName'|'CreationTime'|'HubContentStatus', SortOrder='Ascending'|'Descending', MaxResults=123, NextToken='string' )
string
[REQUIRED]
The name of the hub to list the contents of.
string
[REQUIRED]
The type of hub content to list.
string
Only list hub content if the name contains the specified string.
string
The upper bound of the hub content schema verion.
datetime
Only list hub content that was created before the time specified.
datetime
Only list hub content that was created after the time specified.
string
Sort hub content versions by either name or creation time.
string
Sort hubs by ascending or descending order.
integer
The maximum amount of hub content to list.
string
If the response to a previous ListHubContents request was truncated, the response includes a NextToken . To retrieve the next set of hub content, use the token in the next request.
dict
Response Syntax
{ 'HubContentSummaries': [ { 'HubContentName': 'string', 'HubContentArn': 'string', 'HubContentVersion': 'string', 'HubContentType': 'Model'|'Notebook', 'DocumentSchemaVersion': 'string', 'HubContentDisplayName': 'string', 'HubContentDescription': 'string', 'HubContentSearchKeywords': [ 'string', ], 'HubContentStatus': 'Available'|'Importing'|'Deleting'|'ImportFailed'|'DeleteFailed', 'CreationTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
HubContentSummaries (list) --
The summaries of the listed hub content.
(dict) --
Information about hub content.
HubContentName (string) --
The name of the hub content.
HubContentArn (string) --
The Amazon Resource Name (ARN) of the hub content.
HubContentVersion (string) --
The version of the hub content.
HubContentType (string) --
The type of hub content.
DocumentSchemaVersion (string) --
The version of the hub content document schema.
HubContentDisplayName (string) --
The display name of the hub content.
HubContentDescription (string) --
A description of the hub content.
HubContentSearchKeywords (list) --
The searchable keywords for the hub content.
(string) --
HubContentStatus (string) --
The status of the hub content.
CreationTime (datetime) --
The date and time that the hub content was created.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of hub content, use it in the subsequent request.
Creates an Amazon SageMaker Model Card export job.
See also: AWS API Documentation
Request Syntax
client.create_model_card_export_job( ModelCardName='string', ModelCardVersion=123, ModelCardExportJobName='string', OutputConfig={ 'S3OutputPath': 'string' } )
string
[REQUIRED]
The name of the model card to export.
integer
The version of the model card to export. If a version is not provided, then the latest version of the model card is exported.
string
[REQUIRED]
The name of the model card export job.
dict
[REQUIRED]
The model card output configuration that specifies the Amazon S3 path for exporting.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 output path to export your model card PDF.
dict
Response Syntax
{ 'ModelCardExportJobArn': 'string' }
Response Structure
(dict) --
ModelCardExportJobArn (string) --
The Amazon Resource Name (ARN) of the model card export job.
List existing model cards.
See also: AWS API Documentation
Request Syntax
client.list_model_cards( CreationTimeAfter=datetime(2015, 1, 1), CreationTimeBefore=datetime(2015, 1, 1), MaxResults=123, NameContains='string', ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived', NextToken='string', SortBy='Name'|'CreationTime', SortOrder='Ascending'|'Descending' )
datetime
Only list model cards that were created after the time specified.
datetime
Only list model cards that were created before the time specified.
integer
The maximum number of model cards to list.
string
Only list model cards with names that contain the specified string.
string
Only list model cards with the specified approval status.
string
If the response to a previous ListModelCards request was truncated, the response includes a NextToken . To retrieve the next set of model cards, use the token in the next request.
string
Sort model cards by either name or creation time. Sorts by creation time by default.
string
Sort model cards by ascending or descending order.
dict
Response Syntax
{ 'ModelCardSummaries': [ { 'ModelCardName': 'string', 'ModelCardArn': 'string', 'ModelCardStatus': 'Draft'|'PendingReview'|'Approved'|'Archived', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
ModelCardSummaries (list) --
The summaries of the listed model cards.
(dict) --
A summary of the model card.
ModelCardName (string) --
The name of the model card.
ModelCardArn (string) --
The Amazon Resource Name (ARN) of the model card.
ModelCardStatus (string) --
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft : The model card is a work in progress.
PendingReview : The model card is pending review.
Approved : The model card is approved.
Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
CreationTime (datetime) --
The date and time that the model card was created.
LastModifiedTime (datetime) --
The date and time that the model card was last modified.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of model cards, use it in the subsequent request.
Creates an Amazon SageMaker Model Card.
For information about how to use model cards, see Amazon SageMaker Model Card.
See also: AWS API Documentation
Request Syntax
client.create_model_card( ModelCardName='string', SecurityConfig={ 'KmsKeyId': 'string' }, Content='string', ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The unique name of the model card.
dict
An optional Key Management Service key to encrypt, decrypt, and re-encrypt model card content for regulated workloads with highly sensitive data.
KmsKeyId (string) --
A Key Management Service key ID to use for encrypting a model card.
string
[REQUIRED]
The content of the model card. Content must be in model card JSON schema and provided as a string.
string
[REQUIRED]
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft : The model card is a work in progress.
PendingReview : The model card is pending review.
Approved : The model card is approved.
Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
list
Key-value pairs used to manage metadata for model cards.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'ModelCardArn': 'string' }
Response Structure
(dict) --
ModelCardArn (string) --
The Amazon Resource Name (ARN) of the successfully created model card.
Updates the settings of a space.
See also: AWS API Documentation
Request Syntax
client.update_space( DomainId='string', SpaceName='string', SpaceSettings={ 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] } } )
string
[REQUIRED]
The ID of the associated Domain.
string
[REQUIRED]
The name of the space.
dict
A collection of space settings.
JupyterServerAppSettings (dict) --
The JupyterServer app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The KernelGateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
dict
Response Syntax
{ 'SpaceArn': 'string' }
Response Structure
(dict) --
SpaceArn (string) --
The space's Amazon Resource Name (ARN).
List all existing hubs.
See also: AWS API Documentation
Request Syntax
client.list_hubs( NameContains='string', CreationTimeBefore=datetime(2015, 1, 1), CreationTimeAfter=datetime(2015, 1, 1), LastModifiedTimeBefore=datetime(2015, 1, 1), LastModifiedTimeAfter=datetime(2015, 1, 1), SortBy='HubName'|'CreationTime'|'HubStatus'|'AccountIdOwner', SortOrder='Ascending'|'Descending', MaxResults=123, NextToken='string' )
string
Only list hubs with names that contain the specified string.
datetime
Only list hubs that were created before the time specified.
datetime
Only list hubs that were created after the time specified.
datetime
Only list hubs that were last modified before the time specified.
datetime
Only list hubs that were last modified after the time specified.
string
Sort hubs by either name or creation time.
string
Sort hubs by ascending or descending order.
integer
The maximum number of hubs to list.
string
If the response to a previous ListHubs request was truncated, the response includes a NextToken . To retrieve the next set of hubs, use the token in the next request.
dict
Response Syntax
{ 'HubSummaries': [ { 'HubName': 'string', 'HubArn': 'string', 'HubDisplayName': 'string', 'HubDescription': 'string', 'HubSearchKeywords': [ 'string', ], 'HubStatus': 'InService'|'Creating'|'Updating'|'Deleting'|'CreateFailed'|'UpdateFailed'|'DeleteFailed', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
HubSummaries (list) --
The summaries of the listed hubs.
(dict) --
Information about a hub.
HubName (string) --
The name of the hub.
HubArn (string) --
The Amazon Resource Name (ARN) of the hub.
HubDisplayName (string) --
The display name of the hub.
HubDescription (string) --
A description of the hub.
HubSearchKeywords (list) --
The searchable keywords for the hub.
(string) --
HubStatus (string) --
The status of the hub.
CreationTime (datetime) --
The date and time that the hub was created.
LastModifiedTime (datetime) --
The date and time that the hub was last modified.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of hubs, use it in the subsequent request.
Update an Amazon SageMaker Model Card.
Warning
You cannot update both model card content and model card status in a single call.
See also: AWS API Documentation
Request Syntax
client.update_model_card( ModelCardName='string', Content='string', ModelCardStatus='Draft'|'PendingReview'|'Approved'|'Archived' )
string
[REQUIRED]
The name of the model card to update.
string
The updated model card content. Content must be in model card JSON schema and provided as a string.
When updating model card content, be sure to include the full content and not just updated content.
string
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft : The model card is a work in progress.
PendingReview : The model card is pending review.
Approved : The model card is approved.
Archived : The model card is archived. No more updates should be made to the model card, but it can still be exported.
dict
Response Syntax
{ 'ModelCardArn': 'string' }
Response Structure
(dict) --
ModelCardArn (string) --
The Amazon Resource Name (ARN) of the updated model card.
Describe the content of a hub.
See also: AWS API Documentation
Request Syntax
client.describe_hub_content( HubName='string', HubContentType='Model'|'Notebook', HubContentName='string', HubContentVersion='string' )
string
[REQUIRED]
The name of the hub that contains the content to describe.
string
[REQUIRED]
The type of content in the hub.
string
[REQUIRED]
The name of the content to describe.
string
The version of the content to describe.
dict
Response Syntax
{ 'HubContentName': 'string', 'HubContentArn': 'string', 'HubContentVersion': 'string', 'HubContentType': 'Model'|'Notebook', 'DocumentSchemaVersion': 'string', 'HubName': 'string', 'HubArn': 'string', 'HubContentDisplayName': 'string', 'HubContentDescription': 'string', 'HubContentMarkdown': 'string', 'HubContentDocument': 'string', 'HubContentSearchKeywords': [ 'string', ], 'HubContentDependencies': [ { 'DependencyOriginPath': 'string', 'DependencyCopyPath': 'string' }, ], 'HubContentStatus': 'Available'|'Importing'|'Deleting'|'ImportFailed'|'DeleteFailed', 'FailureReason': 'string', 'CreationTime': datetime(2015, 1, 1) }
Response Structure
(dict) --
HubContentName (string) --
The name of the hub content.
HubContentArn (string) --
The Amazon Resource Name (ARN) of the hub content.
HubContentVersion (string) --
The version of the hub content.
HubContentType (string) --
The type of hub content.
DocumentSchemaVersion (string) --
The document schema version for the hub content.
HubName (string) --
The name of the hub that contains the content.
HubArn (string) --
The Amazon Resource Name (ARN) of the hub that contains the content.
HubContentDisplayName (string) --
The display name of the hub content.
HubContentDescription (string) --
A description of the hub content.
HubContentMarkdown (string) --
Markdown files associated with the hub content to import.
HubContentDocument (string) --
The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.
HubContentSearchKeywords (list) --
The searchable keywords for the hub content.
(string) --
HubContentDependencies (list) --
The location of any dependencies that the hub content has, such as scripts, model artifacts, datasets, or notebooks.
(dict) --
Any dependencies related to hub content, such as scripts, model artifacts, datasets, or notebooks.
DependencyOriginPath (string) --
The hub content dependency origin path.
DependencyCopyPath (string) --
The hub content dependency copy path.
HubContentStatus (string) --
The status of the hub content.
FailureReason (string) --
The failure reason if importing hub content failed.
CreationTime (datetime) --
The date and time that hub content was created.
Gets the alerts for a single monitoring schedule.
See also: AWS API Documentation
Request Syntax
client.list_monitoring_alerts( MonitoringScheduleName='string', NextToken='string', MaxResults=123 )
string
[REQUIRED]
The name of a monitoring schedule.
string
If the result of the previous ListMonitoringAlerts request was truncated, the response includes a NextToken . To retrieve the next set of alerts in the history, use the token in the next request.
integer
The maximum number of results to display. The default is 100.
dict
Response Syntax
{ 'MonitoringAlertSummaries': [ { 'MonitoringAlertName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'AlertStatus': 'InAlert'|'OK', 'DatapointsToAlert': 123, 'EvaluationPeriod': 123, 'Actions': { 'ModelDashboardIndicator': { 'Enabled': True|False } } }, ], 'NextToken': 'string' }
Response Structure
(dict) --
MonitoringAlertSummaries (list) --
A JSON array where each element is a summary for a monitoring alert.
(dict) --
Provides summary information about a monitor alert.
MonitoringAlertName (string) --
The name of a monitoring alert.
CreationTime (datetime) --
A timestamp that indicates when a monitor alert was created.
LastModifiedTime (datetime) --
A timestamp that indicates when a monitor alert was last updated.
AlertStatus (string) --
The current status of an alert.
DatapointsToAlert (integer) --
Within EvaluationPeriod , how many execution failures will raise an alert.
EvaluationPeriod (integer) --
The number of most recent monitoring executions to consider when evaluating alert status.
Actions (dict) --
A list of alert actions taken in response to an alert going into InAlert status.
ModelDashboardIndicator (dict) --
An alert action taken to light up an icon on the Model Dashboard when an alert goes into InAlert status.
Enabled (boolean) --
Indicates whether the alert action is turned on.
NextToken (string) --
If the response is truncated, SageMaker returns this token. To retrieve the next set of alerts, use it in the subsequent request.
Deletes an inference experiment.
Note
This operation does not delete your endpoint, variants, or any underlying resources. This operation only deletes the metadata of your experiment.
See also: AWS API Documentation
Request Syntax
client.delete_inference_experiment( Name='string' )
string
[REQUIRED]
The name of the inference experiment you want to delete.
dict
Response Syntax
{ 'InferenceExperimentArn': 'string' }
Response Structure
(dict) --
InferenceExperimentArn (string) --
The ARN of the deleted inference experiment.
Lists spaces.
See also: AWS API Documentation
Request Syntax
client.list_spaces( NextToken='string', MaxResults=123, SortOrder='Ascending'|'Descending', SortBy='CreationTime'|'LastModifiedTime', DomainIdEquals='string', SpaceNameContains='string' )
string
If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
integer
Returns a list up to a specified limit.
string
The sort order for the results. The default is Ascending .
string
The parameter by which to sort the results. The default is CreationTime .
string
A parameter to search for the Domain ID.
string
A parameter by which to filter the results.
dict
Response Syntax
{ 'Spaces': [ { 'DomainId': 'string', 'SpaceName': 'string', 'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' }
Response Structure
(dict) --
Spaces (list) --
The list of spaces.
(dict) --
The space's details.
DomainId (string) --
The ID of the associated Domain.
SpaceName (string) --
The name of the space.
Status (string) --
The status.
CreationTime (datetime) --
The creation time.
LastModifiedTime (datetime) --
The last modified time.
NextToken (string) --
If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
Deletes an Amazon SageMaker Model Card.
See also: AWS API Documentation
Request Syntax
client.delete_model_card( ModelCardName='string' )
string
[REQUIRED]
The name of the model card to delete.
None
Creates a space used for real time collaboration in a Domain.
See also: AWS API Documentation
Request Syntax
client.create_space( DomainId='string', SpaceName='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], SpaceSettings={ 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] } } )
string
[REQUIRED]
The ID of the associated Domain.
string
[REQUIRED]
The name of the space.
list
Tags to associated with the space. Each tag consists of a key and an optional value. Tag keys must be unique for each resource. Tags are searchable using the Search API.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
A collection of space settings.
JupyterServerAppSettings (dict) --
The JupyterServer app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The KernelGateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
dict
Response Syntax
{ 'SpaceArn': 'string' }
Response Structure
(dict) --
SpaceArn (string) --
The space's Amazon Resource Name (ARN).
Import hub content.
See also: AWS API Documentation
Request Syntax
client.import_hub_content( HubContentName='string', HubContentVersion='string', HubContentType='Model'|'Notebook', DocumentSchemaVersion='string', HubName='string', HubContentDisplayName='string', HubContentDescription='string', HubContentMarkdown='string', HubContentDocument='string', HubContentSearchKeywords=[ 'string', ], Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name of the hub content to import.
string
The version of the hub content to import.
string
[REQUIRED]
The type of hub content to import.
string
[REQUIRED]
The version of the hub content schema to import.
string
[REQUIRED]
The name of the hub to import content into.
string
The display name of the hub content to import.
string
A description of the hub content to import.
string
Markdown files associated with the hub content to import.
string
[REQUIRED]
The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.
list
The searchable keywords of the hub content.
(string) --
list
Any tags associated with the hub content.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'HubArn': 'string', 'HubContentArn': 'string' }
Response Structure
(dict) --
HubArn (string) --
The ARN of the hub that the content was imported into.
HubContentArn (string) --
The ARN of the hub content that was imported.
Describe a hub.
See also: AWS API Documentation
Request Syntax
client.describe_hub( HubName='string' )
string
[REQUIRED]
The name of the hub to describe.
dict
Response Syntax
{ 'HubName': 'string', 'HubArn': 'string', 'HubDisplayName': 'string', 'HubDescription': 'string', 'HubSearchKeywords': [ 'string', ], 'S3StorageConfig': { 'S3OutputPath': 'string' }, 'HubStatus': 'InService'|'Creating'|'Updating'|'Deleting'|'CreateFailed'|'UpdateFailed'|'DeleteFailed', 'FailureReason': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1) }
Response Structure
(dict) --
HubName (string) --
The name of the hub.
HubArn (string) --
The Amazon Resource Name (ARN) of the hub.
HubDisplayName (string) --
The display name of the hub.
HubDescription (string) --
A description of the hub.
HubSearchKeywords (list) --
The searchable keywords for the hub.
(string) --
S3StorageConfig (dict) --
The Amazon S3 storage configuration for the hub.
S3OutputPath (string) --
The Amazon S3 output path for the hub.
HubStatus (string) --
The status of the hub.
FailureReason (string) --
The failure reason if importing hub content failed.
CreationTime (datetime) --
The date and time that the hub was created.
LastModifiedTime (datetime) --
The date and time that the hub was last modified.
Describes an Amazon SageMaker Model Card export job.
See also: AWS API Documentation
Request Syntax
client.describe_model_card_export_job( ModelCardExportJobArn='string' )
string
[REQUIRED]
The Amazon Resource Name (ARN) of the model card export job to describe.
dict
Response Syntax
{ 'ModelCardExportJobName': 'string', 'ModelCardExportJobArn': 'string', 'Status': 'InProgress'|'Completed'|'Failed', 'ModelCardName': 'string', 'ModelCardVersion': 123, 'OutputConfig': { 'S3OutputPath': 'string' }, 'CreatedAt': datetime(2015, 1, 1), 'LastModifiedAt': datetime(2015, 1, 1), 'FailureReason': 'string', 'ExportArtifacts': { 'S3ExportArtifacts': 'string' } }
Response Structure
(dict) --
ModelCardExportJobName (string) --
The name of the model card export job to describe.
ModelCardExportJobArn (string) --
The Amazon Resource Name (ARN) of the model card export job.
Status (string) --
The completion status of the model card export job.
InProgress : The model card export job is in progress.
Completed : The model card export job is complete.
Failed : The model card export job failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeModelCardExportJob call.
ModelCardName (string) --
The name of the model card that the model export job exports.
ModelCardVersion (integer) --
The version of the model card that the model export job exports.
OutputConfig (dict) --
The export output details for the model card.
S3OutputPath (string) --
The Amazon S3 output path to export your model card PDF.
CreatedAt (datetime) --
The date and time that the model export job was created.
LastModifiedAt (datetime) --
The date and time that the model export job was last modified.
FailureReason (string) --
The failure reason if the model export job fails.
ExportArtifacts (dict) --
The exported model card artifacts.
S3ExportArtifacts (string) --
The Amazon S3 URI of the exported model artifacts.
{'SpaceName': 'string'}
Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
See also: AWS API Documentation
Request Syntax
client.create_app( DomainId='string', UserProfileName='string', AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway', AppName='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], ResourceSpec={ 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, SpaceName='string' )
string
[REQUIRED]
The domain ID.
string
The user profile name.
string
[REQUIRED]
The type of app.
string
[REQUIRED]
The name of the app.
list
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
Note
The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
string
The name of the space.
dict
Response Syntax
{ 'AppArn': 'string' }
Response Structure
(dict) --
AppArn (string) --
The Amazon Resource Name (ARN) of the app.
{'DefaultSpaceSettings': {'ExecutionRole': 'string', 'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}], 'DefaultResourceSpec': {'InstanceType': 'system ' '| ' 'ml.t3.micro ' '| ' 'ml.t3.small ' '| ' 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.8xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.16xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.8xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.16xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.12xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5.24xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.p3dn.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge', 'LifecycleConfigArn': 'string', 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string'}, 'LifecycleConfigArns': ['string']}, 'KernelGatewayAppSettings': {'CustomImages': [{'AppImageConfigName': 'string', 'ImageName': 'string', 'ImageVersionNumber': 'integer'}], 'DefaultResourceSpec': {'InstanceType': 'system ' '| ' 'ml.t3.micro ' '| ' 'ml.t3.small ' '| ' 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.8xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.16xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.8xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.16xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.12xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5.24xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.p3dn.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge', 'LifecycleConfigArn': 'string', 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string'}, 'LifecycleConfigArns': ['string']}, 'SecurityGroups': ['string']}, 'DefaultUserSettings': {'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}]}}}
Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web Services account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other.
EFS storage
When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.
SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption.
VPC configuration
All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available:
PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value.
VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to run a Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections.
Warning
NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a SageMaker Studio app successfully.
For more information, see Connect SageMaker Studio Notebooks to Resources in a VPC.
See also: AWS API Documentation
Request Syntax
client.create_domain( DomainName='string', AuthMode='SSO'|'IAM', DefaultUserSettings={ 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'SharingSettings': { 'NotebookOutputOption': 'Allowed'|'Disabled', 'S3OutputPath': 'string', 'S3KmsKeyId': 'string' }, 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] }, 'TensorBoardAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'RStudioServerProAppSettings': { 'AccessStatus': 'ENABLED'|'DISABLED', 'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER' }, 'RSessionAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ] }, 'CanvasAppSettings': { 'TimeSeriesForecastingSettings': { 'Status': 'ENABLED'|'DISABLED', 'AmazonForecastRoleArn': 'string' } } }, SubnetIds=[ 'string', ], VpcId='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], AppNetworkAccessType='PublicInternetOnly'|'VpcOnly', HomeEfsFileSystemKmsKeyId='string', KmsKeyId='string', AppSecurityGroupManagement='Service'|'Customer', DomainSettings={ 'SecurityGroupIds': [ 'string', ], 'RStudioServerProDomainSettings': { 'DomainExecutionRoleArn': 'string', 'RStudioConnectUrl': 'string', 'RStudioPackageManagerUrl': 'string', 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'ExecutionRoleIdentityConfig': 'USER_PROFILE_NAME'|'DISABLED' }, DefaultSpaceSettings={ 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] } } )
string
[REQUIRED]
A name for the domain.
string
[REQUIRED]
The mode of authentication that members use to access the domain.
dict
[REQUIRED]
The default settings to use to create a user profile when UserSettings isn't specified in the call to the CreateUserProfile API.
SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings , the values specified in CreateUserProfile take precedence over those specified in CreateDomain .
ExecutionRole (string) --
The execution role for the user.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .
Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .
Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
(string) --
SharingSettings (dict) --
Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption (string) --
Whether to include the notebook cell output when sharing the notebook. The default is Disabled .
S3OutputPath (string) --
When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.
S3KmsKeyId (string) --
When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings (dict) --
The Jupyter server's app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The kernel gateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
TensorBoardAppSettings (dict) --
The TensorBoard app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings (dict) --
A collection of settings that configure user interaction with the RStudioServerPro app.
AccessStatus (string) --
Indicates whether the current user has access to the RStudioServerPro app.
UserGroup (string) --
The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.
RSessionAppSettings (dict) --
A collection of settings that configure the RSessionGateway app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a RSession app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
CanvasAppSettings (dict) --
The Canvas app settings.
TimeSeriesForecastingSettings (dict) --
Time series forecast settings for the Canvas app.
Status (string) --
Describes whether time series forecasting is enabled or disabled in the Canvas app.
AmazonForecastRoleArn (string) --
The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
list
[REQUIRED]
The VPC subnets that Studio uses for communication.
(string) --
string
[REQUIRED]
The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
list
Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
Tags that you specify for the Domain are also added to all Apps that the Domain launches.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
string
Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly .
PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access
VpcOnly - All Studio traffic is through the specified VPC and subnets
string
Use KmsKeyId .
string
SageMaker uses Amazon Web Services KMS to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
string
The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.
dict
A collection of Domain settings.
SecurityGroupIds (list) --
The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
(string) --
RStudioServerProDomainSettings (dict) --
A collection of settings that configure the RStudioServerPro Domain-level app.
DomainExecutionRoleArn (string) -- [REQUIRED]
The ARN of the execution role for the RStudioServerPro Domain-level app.
RStudioConnectUrl (string) --
A URL pointing to an RStudio Connect server.
RStudioPackageManagerUrl (string) --
A URL pointing to an RStudio Package Manager server.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
ExecutionRoleIdentityConfig (string) --
The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
dict
The default settings used to create a space.
ExecutionRole (string) --
The execution role for the space.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud that the space uses for communication.
(string) --
JupyterServerAppSettings (dict) --
The JupyterServer app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The KernelGateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
dict
Response Syntax
{ 'DomainArn': 'string', 'Url': 'string' }
Response Structure
(dict) --
DomainArn (string) --
The Amazon Resource Name (ARN) of the created domain.
Url (string) --
The URL to the created domain.
{'ShadowProductionVariants': [{'AcceleratorType': 'ml.eia1.medium | ' 'ml.eia1.large | ' 'ml.eia1.xlarge | ' 'ml.eia2.medium | ' 'ml.eia2.large | ' 'ml.eia2.xlarge', 'ContainerStartupHealthCheckTimeoutInSeconds': 'integer', 'CoreDumpConfig': {'DestinationS3Uri': 'string', 'KmsKeyId': 'string'}, 'InitialInstanceCount': 'integer', 'InitialVariantWeight': 'float', 'InstanceType': 'ml.t2.medium | ml.t2.large | ' 'ml.t2.xlarge | ml.t2.2xlarge | ' 'ml.m4.xlarge | ml.m4.2xlarge | ' 'ml.m4.4xlarge | ml.m4.10xlarge ' '| ml.m4.16xlarge | ml.m5.large ' '| ml.m5.xlarge | ml.m5.2xlarge ' '| ml.m5.4xlarge | ' 'ml.m5.12xlarge | ' 'ml.m5.24xlarge | ml.m5d.large ' '| ml.m5d.xlarge | ' 'ml.m5d.2xlarge | ' 'ml.m5d.4xlarge | ' 'ml.m5d.12xlarge | ' 'ml.m5d.24xlarge | ml.c4.large ' '| ml.c4.xlarge | ml.c4.2xlarge ' '| ml.c4.4xlarge | ' 'ml.c4.8xlarge | ml.p2.xlarge | ' 'ml.p2.8xlarge | ml.p2.16xlarge ' '| ml.p3.2xlarge | ' 'ml.p3.8xlarge | ml.p3.16xlarge ' '| ml.c5.large | ml.c5.xlarge | ' 'ml.c5.2xlarge | ml.c5.4xlarge ' '| ml.c5.9xlarge | ' 'ml.c5.18xlarge | ml.c5d.large ' '| ml.c5d.xlarge | ' 'ml.c5d.2xlarge | ' 'ml.c5d.4xlarge | ' 'ml.c5d.9xlarge | ' 'ml.c5d.18xlarge | ' 'ml.g4dn.xlarge | ' 'ml.g4dn.2xlarge | ' 'ml.g4dn.4xlarge | ' 'ml.g4dn.8xlarge | ' 'ml.g4dn.12xlarge | ' 'ml.g4dn.16xlarge | ml.r5.large ' '| ml.r5.xlarge | ml.r5.2xlarge ' '| ml.r5.4xlarge | ' 'ml.r5.12xlarge | ' 'ml.r5.24xlarge | ml.r5d.large ' '| ml.r5d.xlarge | ' 'ml.r5d.2xlarge | ' 'ml.r5d.4xlarge | ' 'ml.r5d.12xlarge | ' 'ml.r5d.24xlarge | ' 'ml.inf1.xlarge | ' 'ml.inf1.2xlarge | ' 'ml.inf1.6xlarge | ' 'ml.inf1.24xlarge | ' 'ml.c6i.large | ml.c6i.xlarge | ' 'ml.c6i.2xlarge | ' 'ml.c6i.4xlarge | ' 'ml.c6i.8xlarge | ' 'ml.c6i.12xlarge | ' 'ml.c6i.16xlarge | ' 'ml.c6i.24xlarge | ' 'ml.c6i.32xlarge | ml.g5.xlarge ' '| ml.g5.2xlarge | ' 'ml.g5.4xlarge | ml.g5.8xlarge ' '| ml.g5.12xlarge | ' 'ml.g5.16xlarge | ' 'ml.g5.24xlarge | ' 'ml.g5.48xlarge | ' 'ml.p4d.24xlarge | ml.c7g.large ' '| ml.c7g.xlarge | ' 'ml.c7g.2xlarge | ' 'ml.c7g.4xlarge | ' 'ml.c7g.8xlarge | ' 'ml.c7g.12xlarge | ' 'ml.c7g.16xlarge | ml.m6g.large ' '| ml.m6g.xlarge | ' 'ml.m6g.2xlarge | ' 'ml.m6g.4xlarge | ' 'ml.m6g.8xlarge | ' 'ml.m6g.12xlarge | ' 'ml.m6g.16xlarge | ' 'ml.m6gd.large | ml.m6gd.xlarge ' '| ml.m6gd.2xlarge | ' 'ml.m6gd.4xlarge | ' 'ml.m6gd.8xlarge | ' 'ml.m6gd.12xlarge | ' 'ml.m6gd.16xlarge | ' 'ml.c6g.large | ml.c6g.xlarge | ' 'ml.c6g.2xlarge | ' 'ml.c6g.4xlarge | ' 'ml.c6g.8xlarge | ' 'ml.c6g.12xlarge | ' 'ml.c6g.16xlarge | ' 'ml.c6gd.large | ml.c6gd.xlarge ' '| ml.c6gd.2xlarge | ' 'ml.c6gd.4xlarge | ' 'ml.c6gd.8xlarge | ' 'ml.c6gd.12xlarge | ' 'ml.c6gd.16xlarge | ' 'ml.c6gn.large | ml.c6gn.xlarge ' '| ml.c6gn.2xlarge | ' 'ml.c6gn.4xlarge | ' 'ml.c6gn.8xlarge | ' 'ml.c6gn.12xlarge | ' 'ml.c6gn.16xlarge | ' 'ml.r6g.large | ml.r6g.xlarge | ' 'ml.r6g.2xlarge | ' 'ml.r6g.4xlarge | ' 'ml.r6g.8xlarge | ' 'ml.r6g.12xlarge | ' 'ml.r6g.16xlarge | ' 'ml.r6gd.large | ml.r6gd.xlarge ' '| ml.r6gd.2xlarge | ' 'ml.r6gd.4xlarge | ' 'ml.r6gd.8xlarge | ' 'ml.r6gd.12xlarge | ' 'ml.r6gd.16xlarge', 'ModelDataDownloadTimeoutInSeconds': 'integer', 'ModelName': 'string', 'ServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'VariantName': 'string', 'VolumeSizeInGB': 'integer'}]}
Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want SageMaker to provision. Then you call the CreateEndpoint API.
Note
Use this API if you want to use SageMaker hosting services to deploy models into production.
In the request, you define a ProductionVariant , for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy.
If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.
Note
When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.
See also: AWS API Documentation
Request Syntax
client.create_endpoint_config( EndpointConfigName='string', ProductionVariants=[ { 'VariantName': 'string', 'ModelName': 'string', 'InitialInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge', 'InitialVariantWeight': ..., 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'CoreDumpConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'ServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'VolumeSizeInGB': 123, 'ModelDataDownloadTimeoutInSeconds': 123, 'ContainerStartupHealthCheckTimeoutInSeconds': 123 }, ], DataCaptureConfig={ 'EnableCapture': True|False, 'InitialSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'CaptureOptions': [ { 'CaptureMode': 'Input'|'Output' }, ], 'CaptureContentTypeHeader': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], KmsKeyId='string', AsyncInferenceConfig={ 'ClientConfig': { 'MaxConcurrentInvocationsPerInstance': 123 }, 'OutputConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'NotificationConfig': { 'SuccessTopic': 'string', 'ErrorTopic': 'string' } } }, ExplainerConfig={ 'ClarifyExplainerConfig': { 'EnableExplanations': 'string', 'InferenceConfig': { 'FeaturesAttribute': 'string', 'ContentTemplate': 'string', 'MaxRecordCount': 123, 'MaxPayloadInMB': 123, 'ProbabilityIndex': 123, 'LabelIndex': 123, 'ProbabilityAttribute': 'string', 'LabelAttribute': 'string', 'LabelHeaders': [ 'string', ], 'FeatureHeaders': [ 'string', ], 'FeatureTypes': [ 'numerical'|'categorical'|'text', ] }, 'ShapConfig': { 'ShapBaselineConfig': { 'MimeType': 'string', 'ShapBaseline': 'string', 'ShapBaselineUri': 'string' }, 'NumberOfSamples': 123, 'UseLogit': True|False, 'Seed': 123, 'TextConfig': { 'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx', 'Granularity': 'token'|'sentence'|'paragraph' } } } }, ShadowProductionVariants=[ { 'VariantName': 'string', 'ModelName': 'string', 'InitialInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge', 'InitialVariantWeight': ..., 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'CoreDumpConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'ServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'VolumeSizeInGB': 123, 'ModelDataDownloadTimeoutInSeconds': 123, 'ContainerStartupHealthCheckTimeoutInSeconds': 123 }, ] )
string
[REQUIRED]
The name of the endpoint configuration. You specify this name in a CreateEndpoint request.
list
[REQUIRED]
An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
(dict) --
Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.
VariantName (string) -- [REQUIRED]
The name of the production variant.
ModelName (string) -- [REQUIRED]
The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount (integer) --
Number of instances to launch initially.
InstanceType (string) --
The ML compute instance type.
InitialVariantWeight (float) --
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
CoreDumpConfig (dict) --
Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri (string) -- [REQUIRED]
The Amazon S3 bucket to send the core dump to.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
ServerlessConfig (dict) --
The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
MemorySizeInMB (integer) -- [REQUIRED]
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) -- [REQUIRED]
The maximum number of concurrent invocations your serverless endpoint can process.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currenly only Amazon EBS gp2 storage volumes are supported.
ModelDataDownloadTimeoutInSeconds (integer) --
The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
ContainerStartupHealthCheckTimeoutInSeconds (integer) --
The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
dict
Configuration to control how SageMaker captures inference data.
EnableCapture (boolean) --
Whether data capture should be enabled or disabled (defaults to enabled).
InitialSamplingPercentage (integer) -- [REQUIRED]
The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
DestinationS3Uri (string) -- [REQUIRED]
The Amazon S3 location used to capture the data.
KmsKeyId (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
CaptureOptions (list) -- [REQUIRED]
Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
(dict) --
Specifies data Model Monitor will capture.
CaptureMode (string) -- [REQUIRED]
Specify the boundary of data to capture.
CaptureContentTypeHeader (dict) --
Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
list
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
string
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint , UpdateEndpoint requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMS
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
dict
Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
ClientConfig (dict) --
Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance (integer) --
The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.
OutputConfig (dict) -- [REQUIRED]
Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 location to upload inference responses to.
NotificationConfig (dict) --
Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic (string) --
Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic (string) --
Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
dict
A member of CreateEndpointConfig that enables explainers.
ClarifyExplainerConfig (dict) --
A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.
EnableExplanations (string) --
A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.
InferenceConfig (dict) --
The inference configuration parameter for the model container.
FeaturesAttribute (string) --
Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .
ContentTemplate (string) --
A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.
MaxRecordCount (integer) --
The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.
MaxPayloadInMB (integer) --
The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.
ProbabilityIndex (integer) --
A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.
Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .
Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .
LabelIndex (integer) --
A zero-based index used to extract a label header or list of label headers from model container output in CSV format.
Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .
ProbabilityAttribute (string) --
A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.
Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .
LabelAttribute (string) --
A JMESPath expression used to locate the list of label headers in the model container output.
Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]
LabelHeaders (list) --
For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.
(string) --
FeatureHeaders (list) --
The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.
(string) --
FeatureTypes (list) --
A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.
(string) --
ShapConfig (dict) -- [REQUIRED]
The configuration for SHAP analysis.
ShapBaselineConfig (dict) -- [REQUIRED]
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
MimeType (string) --
The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .
ShapBaseline (string) --
The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.
ShapBaselineUri (string) --
The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.
NumberOfSamples (integer) --
The number of samples to be used for analysis by the Kernal SHAP algorithm.
Note
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
UseLogit (boolean) --
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
Seed (integer) --
The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
TextConfig (dict) --
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
Language (string) -- [REQUIRED]
Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.
Note
For a mix of multiple languages, use code 'xx' .
Granularity (string) -- [REQUIRED]
The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.
list
Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .
(dict) --
Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.
VariantName (string) -- [REQUIRED]
The name of the production variant.
ModelName (string) -- [REQUIRED]
The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount (integer) --
Number of instances to launch initially.
InstanceType (string) --
The ML compute instance type.
InitialVariantWeight (float) --
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
CoreDumpConfig (dict) --
Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri (string) -- [REQUIRED]
The Amazon S3 bucket to send the core dump to.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
ServerlessConfig (dict) --
The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
MemorySizeInMB (integer) -- [REQUIRED]
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) -- [REQUIRED]
The maximum number of concurrent invocations your serverless endpoint can process.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currenly only Amazon EBS gp2 storage volumes are supported.
ModelDataDownloadTimeoutInSeconds (integer) --
The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
ContainerStartupHealthCheckTimeoutInSeconds (integer) --
The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
dict
Response Syntax
{ 'EndpointConfigArn': 'string' }
Response Structure
(dict) --
EndpointConfigArn (string) --
The Amazon Resource Name (ARN) of the endpoint configuration.
{'OfflineStoreConfig': {'TableFormat': 'Glue | Iceberg'}}
Create a new FeatureGroup . A FeatureGroup is a group of Features defined in the FeatureStore to describe a Record .
The FeatureGroup defines the schema and features contained in the FeatureGroup. A FeatureGroup definition is composed of a list of Features , a RecordIdentifierFeatureName , an EventTimeFeatureName and configurations for its OnlineStore and OfflineStore . Check Amazon Web Services service quotas to see the FeatureGroup s quota for your Amazon Web Services account.
Warning
You must include at least one of OnlineStoreConfig and OfflineStoreConfig to create a FeatureGroup .
See also: AWS API Documentation
Request Syntax
client.create_feature_group( FeatureGroupName='string', RecordIdentifierFeatureName='string', EventTimeFeatureName='string', FeatureDefinitions=[ { 'FeatureName': 'string', 'FeatureType': 'Integral'|'Fractional'|'String' }, ], OnlineStoreConfig={ 'SecurityConfig': { 'KmsKeyId': 'string' }, 'EnableOnlineStore': True|False }, OfflineStoreConfig={ 'S3StorageConfig': { 'S3Uri': 'string', 'KmsKeyId': 'string', 'ResolvedOutputS3Uri': 'string' }, 'DisableGlueTableCreation': True|False, 'DataCatalogConfig': { 'TableName': 'string', 'Catalog': 'string', 'Database': 'string' }, 'TableFormat': 'Glue'|'Iceberg' }, RoleArn='string', Description='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] )
string
[REQUIRED]
The name of the FeatureGroup . The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. The name:
Must start and end with an alphanumeric character.
Can only contain alphanumeric character and hyphens. Spaces are not allowed.
string
[REQUIRED]
The name of the Feature whose value uniquely identifies a Record defined in the FeatureStore . Only the latest record per identifier value will be stored in the OnlineStore . RecordIdentifierFeatureName must be one of feature definitions' names.
You use the RecordIdentifierFeatureName to access data in a FeatureStore .
This name:
Must start and end with an alphanumeric character.
Can only contains alphanumeric characters, hyphens, underscores. Spaces are not allowed.
string
[REQUIRED]
The name of the feature that stores the EventTime of a Record in a FeatureGroup .
An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup . All Records in the FeatureGroup must have a corresponding EventTime .
An EventTime can be a String or Fractional .
Fractional : EventTime feature values must be a Unix timestamp in seconds.
String : EventTime feature values must be an ISO-8601 string in the format. The following formats are supported yyyy-MM-dd'T'HH:mm:ssZ and yyyy-MM-dd'T'HH:mm:ss.SSSZ where yyyy , MM , and dd represent the year, month, and day respectively and HH , mm , ss , and if applicable, SSS represent the hour, month, second and milliseconds respsectively. 'T' and Z are constants.
list
[REQUIRED]
A list of Feature names and types. Name and Type is compulsory per Feature .
Valid feature FeatureType s are Integral , Fractional and String .
FeatureName s cannot be any of the following: is_deleted , write_time , api_invocation_time
You can create up to 2,500 FeatureDefinition s per FeatureGroup .
(dict) --
A list of features. You must include FeatureName and FeatureType . Valid feature FeatureType s are Integral , Fractional and String .
FeatureName (string) --
The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted , write_time , api_invocation_time .
FeatureType (string) --
The value type of a feature. Valid values are Integral, Fractional, or String.
dict
You can turn the OnlineStore on or off by specifying True for the EnableOnlineStore flag in OnlineStoreConfig ; the default value is False .
You can also include an Amazon Web Services KMS key ID ( KMSKeyId ) for at-rest encryption of the OnlineStore .
SecurityConfig (dict) --
Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your OnlineStore .
KmsKeyId (string) --
The ID of the Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.
The caller (either IAM user or IAM role) of CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :
"kms:Encrypt"
"kms:Decrypt"
"kms:DescribeKey"
"kms:CreateGrant"
"kms:RetireGrant"
"kms:ReEncryptFrom"
"kms:ReEncryptTo"
"kms:GenerateDataKey"
"kms:ListAliases"
"kms:ListGrants"
"kms:RevokeGrant"
The caller (either IAM user or IAM role) to all DataPlane operations ( PutRecord , GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :
"kms:Decrypt"
EnableOnlineStore (boolean) --
Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn OnlineStore on by specifying True for the EnableOnlineStore flag.
The default value is False .
dict
Use this to configure an OfflineFeatureStore . This parameter allows you to specify:
The Amazon Simple Storage Service (Amazon S3) location of an OfflineStore .
A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog.
An KMS encryption key to encrypt the Amazon S3 location used for OfflineStore . If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent.
To learn more about this parameter, see OfflineStoreConfig.
S3StorageConfig (dict) -- [REQUIRED]
The Amazon Simple Storage (Amazon S3) location of OfflineStore .
S3Uri (string) -- [REQUIRED]
The S3 URI, or location in Amazon S3, of OfflineStore .
S3 URIs have a format similar to the following: s3://example-bucket/prefix/ .
KmsKeyId (string) --
The Amazon Web Services Key Management Service (KMS) key ID of the key used to encrypt any objects written into the OfflineStore S3 location.
The IAM roleARN that is passed as a parameter to CreateFeatureGroup must have below permissions to the KmsKeyId :
"kms:GenerateDataKey"
ResolvedOutputS3Uri (string) --
The S3 path where offline records are written.
DisableGlueTableCreation (boolean) --
Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore .
DataCatalogConfig (dict) --
The meta data of the Glue table that is autogenerated when an OfflineStore is created.
TableName (string) -- [REQUIRED]
The name of the Glue table.
Catalog (string) -- [REQUIRED]
The name of the Glue table catalog.
Database (string) -- [REQUIRED]
The name of the Glue table database.
TableFormat (string) --
Format for the offline store feature group. Iceberg is the optimal format for feature groups shared between offline and online stores.
string
The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.
string
A free-form description of a FeatureGroup .
list
Tags used to identify Features in each FeatureGroup .
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Response Syntax
{ 'FeatureGroupArn': 'string' }
Response Structure
(dict) --
FeatureGroupArn (string) --
The Amazon Resource Name (ARN) of the FeatureGroup . This is a unique identifier for the feature group.
{'SpaceName': 'string'}
Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM.
The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app.
You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to SageMaker Studio Through an Interface VPC Endpoint .
Note
The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds . If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.
See also: AWS API Documentation
Request Syntax
client.create_presigned_domain_url( DomainId='string', UserProfileName='string', SessionExpirationDurationInSeconds=123, ExpiresInSeconds=123, SpaceName='string' )
string
[REQUIRED]
The domain ID.
string
[REQUIRED]
The name of the UserProfile to sign-in as.
integer
The session expiration duration in seconds. This value defaults to 43200.
integer
The number of seconds until the pre-signed URL expires. This value defaults to 300.
string
The name of the space.
dict
Response Syntax
{ 'AuthorizedUrl': 'string' }
Response Structure
(dict) --
AuthorizedUrl (string) --
The presigned URL.
{'ExperimentConfig': {'RunName': 'string'}}
Creates a processing job.
See also: AWS API Documentation
Request Syntax
client.create_processing_job( ProcessingInputs=[ { 'InputName': 'string', 'AppManaged': True|False, 'S3Input': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3DataType': 'ManifestFile'|'S3Prefix', 'S3InputMode': 'Pipe'|'File', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'S3CompressionType': 'None'|'Gzip' }, 'DatasetDefinition': { 'AthenaDatasetDefinition': { 'Catalog': 'string', 'Database': 'string', 'QueryString': 'string', 'WorkGroup': 'string', 'OutputS3Uri': 'string', 'KmsKeyId': 'string', 'OutputFormat': 'PARQUET'|'ORC'|'AVRO'|'JSON'|'TEXTFILE', 'OutputCompression': 'GZIP'|'SNAPPY'|'ZLIB' }, 'RedshiftDatasetDefinition': { 'ClusterId': 'string', 'Database': 'string', 'DbUser': 'string', 'QueryString': 'string', 'ClusterRoleArn': 'string', 'OutputS3Uri': 'string', 'KmsKeyId': 'string', 'OutputFormat': 'PARQUET'|'CSV', 'OutputCompression': 'None'|'GZIP'|'BZIP2'|'ZSTD'|'SNAPPY' }, 'LocalPath': 'string', 'DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'InputMode': 'Pipe'|'File' } }, ], ProcessingOutputConfig={ 'Outputs': [ { 'OutputName': 'string', 'S3Output': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3UploadMode': 'Continuous'|'EndOfJob' }, 'FeatureStoreOutput': { 'FeatureGroupName': 'string' }, 'AppManaged': True|False }, ], 'KmsKeyId': 'string' }, ProcessingJobName='string', ProcessingResources={ 'ClusterConfig': { 'InstanceCount': 123, 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' } }, StoppingCondition={ 'MaxRuntimeInSeconds': 123 }, AppSpecification={ 'ImageUri': 'string', 'ContainerEntrypoint': [ 'string', ], 'ContainerArguments': [ 'string', ] }, Environment={ 'string': 'string' }, NetworkConfig={ 'EnableInterContainerTrafficEncryption': True|False, 'EnableNetworkIsolation': True|False, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] } }, RoleArn='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], ExperimentConfig={ 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' } )
list
An array of inputs configuring the data to download into the processing container.
(dict) --
The inputs for a processing job. The processing input must specify exactly one of either S3Input or DatasetDefinition types.
InputName (string) -- [REQUIRED]
The name for the processing job input.
AppManaged (boolean) --
When True , input operations such as data download are managed natively by the processing job application. When False (default), input operations are managed by Amazon SageMaker.
S3Input (dict) --
Configuration for downloading input data from Amazon S3 into the processing container.
S3Uri (string) -- [REQUIRED]
The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run a processing job.
LocalPath (string) --
The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False (default).
S3DataType (string) -- [REQUIRED]
Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
S3InputMode (string) --
Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.
S3DataDistributionType (string) --
Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key, downloading one shard of data to each processing instance.
S3CompressionType (string) --
Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.
DatasetDefinition (dict) --
Configuration for a Dataset Definition input.
AthenaDatasetDefinition (dict) --
Configuration for Athena Dataset Definition input.
Catalog (string) -- [REQUIRED]
The name of the data catalog used in Athena query execution.
Database (string) -- [REQUIRED]
The name of the database used in the Athena query execution.
QueryString (string) -- [REQUIRED]
The SQL query statements, to be executed.
WorkGroup (string) --
The name of the workgroup in which the Athena query is being started.
OutputS3Uri (string) -- [REQUIRED]
The location in Amazon S3 where Athena query results are stored.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.
OutputFormat (string) -- [REQUIRED]
The data storage format for Athena query results.
OutputCompression (string) --
The compression used for Athena query results.
RedshiftDatasetDefinition (dict) --
Configuration for Redshift Dataset Definition input.
ClusterId (string) -- [REQUIRED]
The Redshift cluster Identifier.
Database (string) -- [REQUIRED]
The name of the Redshift database used in Redshift query execution.
DbUser (string) -- [REQUIRED]
The database user name used in Redshift query execution.
QueryString (string) -- [REQUIRED]
The SQL query statements to be executed.
ClusterRoleArn (string) -- [REQUIRED]
The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.
OutputS3Uri (string) -- [REQUIRED]
The location in Amazon S3 where the Redshift query results are stored.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.
OutputFormat (string) -- [REQUIRED]
The data storage format for Redshift query results.
OutputCompression (string) --
The compression used for Redshift query results.
LocalPath (string) --
The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job. LocalPath is an absolute path to the input data. This is a required parameter when AppManaged is False (default).
DataDistributionType (string) --
Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).
InputMode (string) --
Whether to use File or Pipe input mode. In File (default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
dict
Output configuration for the processing job.
Outputs (list) -- [REQUIRED]
An array of outputs configuring the data to upload from the processing container.
(dict) --
Describes the results of a processing job. The processing output must specify exactly one of either S3Output or FeatureStoreOutput types.
OutputName (string) -- [REQUIRED]
The name for the processing job output.
S3Output (dict) --
Configuration for processing job outputs in Amazon S3.
S3Uri (string) -- [REQUIRED]
A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.
LocalPath (string) -- [REQUIRED]
The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.
S3UploadMode (string) -- [REQUIRED]
Whether to upload the results of the processing job continuously or after the job completes.
FeatureStoreOutput (dict) --
Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when AppManaged is specified.
FeatureGroupName (string) -- [REQUIRED]
The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output. Note that your processing script is responsible for putting records into your Feature Store.
AppManaged (boolean) --
When True , output operations such as data upload are managed natively by the processing job application. When False (default), output operations are managed by Amazon SageMaker.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
string
[REQUIRED]
The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
dict
[REQUIRED]
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
ClusterConfig (dict) -- [REQUIRED]
The configuration for the resources in a cluster used to run the processing job.
InstanceCount (integer) -- [REQUIRED]
The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType (string) -- [REQUIRED]
The ML compute instance type for the processing job.
VolumeSizeInGB (integer) -- [REQUIRED]
The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
Note
Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for processing, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.
For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
dict
The time limit for how long the processing job is allowed to run.
MaxRuntimeInSeconds (integer) -- [REQUIRED]
Specifies the maximum runtime in seconds.
dict
[REQUIRED]
Configures the processing job to run a specified Docker container image.
ImageUri (string) -- [REQUIRED]
The container image to be run by the processing job.
ContainerEntrypoint (list) --
The entrypoint for a container used to run a processing job.
(string) --
ContainerArguments (list) --
The arguments for a container used to run a processing job.
(string) --
dict
The environment variables to set in the Docker container. Up to 100 key and values entries in the map are supported.
(string) --
(string) --
dict
Networking options for a processing job, such as whether to allow inbound and outbound network calls to and from processing containers, and the VPC subnets and security groups to use for VPC-enabled processing jobs.
EnableInterContainerTrafficEncryption (boolean) --
Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.
EnableNetworkIsolation (boolean) --
Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
VpcConfig (dict) --
Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds (list) -- [REQUIRED]
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) -- [REQUIRED]
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
string
[REQUIRED]
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
list
(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate the trial component with.
dict
Response Syntax
{ 'ProcessingJobArn': 'string' }
Response Structure
(dict) --
ProcessingJobArn (string) --
The Amazon Resource Name (ARN) of the processing job.
{'ExperimentConfig': {'RunName': 'string'}}
Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.
If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference.
In the request body, you provide the following:
AlgorithmSpecification - Identifies the training algorithm to use.
HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.
Warning
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
InputDataConfig - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.
OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training.
ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.
EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.
RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training.
StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete.
Environment - The environment variables to set in the Docker container.
RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError .
For more information about SageMaker, see How It Works.
See also: AWS API Documentation
Request Syntax
client.create_training_job( TrainingJobName='string', HyperParameters={ 'string': 'string' }, AlgorithmSpecification={ 'TrainingImage': 'string', 'AlgorithmName': 'string', 'TrainingInputMode': 'Pipe'|'File'|'FastFile', 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'EnableSageMakerMetricsTimeSeries': True|False, 'ContainerEntrypoint': [ 'string', ], 'ContainerArguments': [ 'string', ] }, RoleArn='string', InputDataConfig=[ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ], 'InstanceGroupNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File'|'FastFile', 'ShuffleConfig': { 'Seed': 123 } }, ], OutputDataConfig={ 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, ResourceConfig={ 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string', 'InstanceGroups': [ { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge', 'InstanceCount': 123, 'InstanceGroupName': 'string' }, ], 'KeepAlivePeriodInSeconds': 123 }, VpcConfig={ 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] }, StoppingCondition={ 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123 }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], EnableNetworkIsolation=True|False, EnableInterContainerTrafficEncryption=True|False, EnableManagedSpotTraining=True|False, CheckpointConfig={ 'S3Uri': 'string', 'LocalPath': 'string' }, DebugHookConfig={ 'LocalPath': 'string', 'S3OutputPath': 'string', 'HookParameters': { 'string': 'string' }, 'CollectionConfigurations': [ { 'CollectionName': 'string', 'CollectionParameters': { 'string': 'string' } }, ] }, DebugRuleConfigurations=[ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], TensorBoardOutputConfig={ 'LocalPath': 'string', 'S3OutputPath': 'string' }, ExperimentConfig={ 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' }, ProfilerConfig={ 'S3OutputPath': 'string', 'ProfilingIntervalInMilliseconds': 123, 'ProfilingParameters': { 'string': 'string' }, 'DisableProfiler': True|False }, ProfilerRuleConfigurations=[ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], Environment={ 'string': 'string' }, RetryStrategy={ 'MaximumRetryAttempts': 123 } )
string
[REQUIRED]
The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
dict
Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms.
You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint .
Warning
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
(string) --
(string) --
dict
[REQUIRED]
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
TrainingImage (string) --
The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for SageMaker built-in algorithms, see Docker Registry Paths and Example Code in the Amazon SageMaker developer guide . SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information about using your custom training container, see Using Your Own Algorithms with Amazon SageMaker.
Note
You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.
For more information, see the note in the AlgorithmName parameter description.
AlgorithmName (string) --
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.
Note
You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.
Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for TrainingImage , and vice versa.
If you specify values for both parameters, the training job might break; if you don't specify any value for both parameters, the training job might raise a null error.
TrainingInputMode (string) -- [REQUIRED]
The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
MetricDefinitions (list) --
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
(dict) --
Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.
Name (string) -- [REQUIRED]
The name of the metric.
Regex (string) -- [REQUIRED]
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
EnableSageMakerMetricsTimeSeries (boolean) --
To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
ContainerEntrypoint (list) --
The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.
(string) --
ContainerArguments (list) --
The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.
(string) --
string
[REQUIRED]
The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.
During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see SageMaker Roles.
Note
To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.
list
An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.
Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data . The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.
Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.
(dict) --
A channel is a named input source that training algorithms can consume.
ChannelName (string) -- [REQUIRED]
The name of the channel.
DataSource (dict) -- [REQUIRED]
The location of the channel data.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.
If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix
A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
S3DataDistributionType (string) --
If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .
If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.
AttributeNames (list) --
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string) --
InstanceGroupNames (list) --
A list of names of instance groups that get data from the S3 data source.
(string) --
FileSystemDataSource (dict) --
The file system that is associated with a channel.
FileSystemId (string) -- [REQUIRED]
The file system id.
FileSystemAccessMode (string) -- [REQUIRED]
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
FileSystemType (string) -- [REQUIRED]
The file system type.
DirectoryPath (string) -- [REQUIRED]
The full path to the directory to associate with the channel.
ContentType (string) --
The MIME type of the data.
CompressionType (string) --
If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
RecordWrapperType (string) --
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
InputMode (string) --
(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.
To use a model for incremental training, choose File input model.
ShuffleConfig (dict) --
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.
For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
Seed (integer) -- [REQUIRED]
Determines the shuffling order in ShuffleConfig value.
dict
[REQUIRED]
Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
S3OutputPath (string) -- [REQUIRED]
Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .
dict
[REQUIRED]
The resources, including the ML compute instances and ML storage volumes, to use for model training.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
InstanceType (string) --
The ML compute instance type.
InstanceCount (integer) --
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB (integer) -- [REQUIRED]
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.
When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .
When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .
To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId (string) --
The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId can be in any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
InstanceGroups (list) --
The configuration of a heterogeneous cluster in JSON format.
(dict) --
Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .
InstanceType (string) -- [REQUIRED]
Specifies the instance type of the instance group.
InstanceCount (integer) -- [REQUIRED]
Specifies the number of instances of the instance group.
InstanceGroupName (string) -- [REQUIRED]
Specifies the name of the instance group.
KeepAlivePeriodInSeconds (integer) --
The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
dict
A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds (list) -- [REQUIRED]
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) -- [REQUIRED]
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
dict
[REQUIRED]
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
MaxRuntimeInSeconds (integer) --
The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.
For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.
The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.
MaxWaitTimeInSeconds (integer) --
The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.
When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.
list
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
boolean
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
boolean
To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
boolean
To train models using managed spot training, choose True . Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.
The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
dict
Contains information about the output location for managed spot training checkpoint data.
S3Uri (string) -- [REQUIRED]
Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .
LocalPath (string) --
(Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .
dict
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
LocalPath (string) --
Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/ .
S3OutputPath (string) -- [REQUIRED]
Path to Amazon S3 storage location for metrics and tensors.
HookParameters (dict) --
Configuration information for the Amazon SageMaker Debugger hook parameters.
(string) --
(string) --
CollectionConfigurations (list) --
Configuration information for Amazon SageMaker Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(dict) --
Configuration information for the Amazon SageMaker Debugger output tensor collections.
CollectionName (string) --
The name of the tensor collection. The name must be unique relative to other rule configuration names.
CollectionParameters (dict) --
Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .
(string) --
(string) --
list
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
(dict) --
Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
RuleConfigurationName (string) -- [REQUIRED]
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) -- [REQUIRED]
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a custom rule for debugging a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
dict
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
LocalPath (string) --
Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .
S3OutputPath (string) -- [REQUIRED]
Path to Amazon S3 storage location for TensorBoard output.
dict
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate the trial component with.
dict
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
S3OutputPath (string) --
Path to Amazon S3 storage location for system and framework metrics.
ProfilingIntervalInMilliseconds (integer) --
A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.
ProfilingParameters (dict) --
Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(string) --
(string) --
DisableProfiler (boolean) --
Configuration to turn off Amazon SageMaker Debugger's system monitoring and profiling functionality. To turn it off, set to True .
list
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
(dict) --
Configuration information for profiling rules.
RuleConfigurationName (string) -- [REQUIRED]
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) -- [REQUIRED]
The Amazon Elastic Container Registry Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a custom rule for profiling a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
dict
The environment variables to set in the Docker container.
(string) --
(string) --
dict
The number of times to retry the job when the job fails due to an InternalServerError .
MaximumRetryAttempts (integer) -- [REQUIRED]
The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .
dict
Response Syntax
{ 'TrainingJobArn': 'string' }
Response Structure
(dict) --
TrainingJobArn (string) --
The Amazon Resource Name (ARN) of the training job.
{'ExperimentConfig': {'RunName': 'string'}}
Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.
To perform batch transformations, you create a transform job and use the data that you have readily available.
In the request body, you provide the following:
TransformJobName - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see CreateModel.
TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.
TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
TransformResources - Identifies the ML compute instances for the transform job.
For more information about how batch transformation works, see Batch Transform.
See also: AWS API Documentation
Request Syntax
client.create_transform_job( TransformJobName='string', ModelName='string', MaxConcurrentTransforms=123, ModelClientConfig={ 'InvocationsTimeoutInSeconds': 123, 'InvocationsMaxRetries': 123 }, MaxPayloadInMB=123, BatchStrategy='MultiRecord'|'SingleRecord', Environment={ 'string': 'string' }, TransformInput={ 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, TransformOutput={ 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, DataCaptureConfig={ 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'GenerateInferenceId': True|False }, TransformResources={ 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' }, DataProcessing={ 'InputFilter': 'string', 'OutputFilter': 'string', 'JoinSource': 'Input'|'None' }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], ExperimentConfig={ 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' } )
string
[REQUIRED]
The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
string
[REQUIRED]
The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.
integer
The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1 . For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms .
dict
Configures the timeout and maximum number of retries for processing a transform job invocation.
InvocationsTimeoutInSeconds (integer) --
The timeout value in seconds for an invocation request. The default value is 600.
InvocationsMaxRetries (integer) --
The maximum number of retries when invocation requests are failing. The default value is 3.
integer
The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.
The value of MaxPayloadInMB cannot be greater than 100 MB. If you specify the MaxConcurrentTransforms parameter, the value of (MaxConcurrentTransforms * MaxPayloadInMB) also cannot exceed 100 MB.
For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0 . This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.
string
Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
To enable the batch strategy, you must set the SplitType property to Line , RecordIO , or TFRecord .
To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line .
To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line .
dict
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
dict
[REQUIRED]
Describes the input source and the way the transform job consumes it.
DataSource (dict) -- [REQUIRED]
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) -- [REQUIRED]
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile , S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix .
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.
Note
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .
For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.
dict
[REQUIRED]
Describes the results of the transform job.
S3OutputPath (string) -- [REQUIRED]
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
dict
Configuration to control how SageMaker captures inference data.
DestinationS3Uri (string) -- [REQUIRED]
The Amazon S3 location being used to capture the data.
KmsKeyId (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
GenerateInferenceId (boolean) --
Flag that indicates whether to append inference id to the output.
dict
[REQUIRED]
Describes the resources, including ML instance types and ML instance count, to use for the transform job.
InstanceType (string) -- [REQUIRED]
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.
InstanceCount (integer) -- [REQUIRED]
The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
dict
The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
InputFilter (string) --
A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $ .
Examples: "$" , "$[1:]" , "$.features"
OutputFilter (string) --
A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $ . If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.
Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"
JoinSource (string) --
Specifies the source of the data to join with the transformed data. The valid values are None and Input . The default value is None , which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input . You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.
For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput . The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput .
For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.
For information on how joining in applied, see Workflow for Associating Inferences with Input Records.
list
(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate the trial component with.
dict
Response Syntax
{ 'TransformJobArn': 'string' }
Response Structure
(dict) --
TransformJobArn (string) --
The Amazon Resource Name (ARN) of the transform job.
{'UserSettings': {'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}]}}}
Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
See also: AWS API Documentation
Request Syntax
client.create_user_profile( DomainId='string', UserProfileName='string', SingleSignOnUserIdentifier='string', SingleSignOnUserValue='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], UserSettings={ 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'SharingSettings': { 'NotebookOutputOption': 'Allowed'|'Disabled', 'S3OutputPath': 'string', 'S3KmsKeyId': 'string' }, 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] }, 'TensorBoardAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'RStudioServerProAppSettings': { 'AccessStatus': 'ENABLED'|'DISABLED', 'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER' }, 'RSessionAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ] }, 'CanvasAppSettings': { 'TimeSeriesForecastingSettings': { 'Status': 'ENABLED'|'DISABLED', 'AmazonForecastRoleArn': 'string' } } } )
string
[REQUIRED]
The ID of the associated Domain.
string
[REQUIRED]
A name for the UserProfile. This value is not case sensitive.
string
A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is "UserName". If the Domain's AuthMode is IAM Identity Center, this field is required. If the Domain's AuthMode is not IAM Identity Center, this field cannot be specified.
string
The username of the associated Amazon Web Services Single Sign-On User for this UserProfile. If the Domain's AuthMode is IAM Identity Center, this field is required, and must match a valid username of a user in your directory. If the Domain's AuthMode is not IAM Identity Center, this field cannot be specified.
list
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
Tags that you specify for the User Profile are also added to all Apps that the User Profile launches.
(dict) --
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.
Key (string) -- [REQUIRED]
The tag key. Tag keys must be unique per resource.
Value (string) -- [REQUIRED]
The tag value.
dict
A collection of settings.
ExecutionRole (string) --
The execution role for the user.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .
Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .
Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
(string) --
SharingSettings (dict) --
Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption (string) --
Whether to include the notebook cell output when sharing the notebook. The default is Disabled .
S3OutputPath (string) --
When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.
S3KmsKeyId (string) --
When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings (dict) --
The Jupyter server's app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The kernel gateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
TensorBoardAppSettings (dict) --
The TensorBoard app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings (dict) --
A collection of settings that configure user interaction with the RStudioServerPro app.
AccessStatus (string) --
Indicates whether the current user has access to the RStudioServerPro app.
UserGroup (string) --
The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.
RSessionAppSettings (dict) --
A collection of settings that configure the RSessionGateway app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a RSession app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
CanvasAppSettings (dict) --
The Canvas app settings.
TimeSeriesForecastingSettings (dict) --
Time series forecast settings for the Canvas app.
Status (string) --
Describes whether time series forecasting is enabled or disabled in the Canvas app.
AmazonForecastRoleArn (string) --
The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
dict
Response Syntax
{ 'UserProfileArn': 'string' }
Response Structure
(dict) --
UserProfileArn (string) --
The user profile Amazon Resource Name (ARN).
{'SpaceName': 'string'}
Used to stop and delete an app.
See also: AWS API Documentation
Request Syntax
client.delete_app( DomainId='string', UserProfileName='string', AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway', AppName='string', SpaceName='string' )
string
[REQUIRED]
The domain ID.
string
The user profile name.
string
[REQUIRED]
The type of app.
string
[REQUIRED]
The name of the app.
string
The name of the space.
None
{'SpaceName': 'string'}
Describes the app.
See also: AWS API Documentation
Request Syntax
client.describe_app( DomainId='string', UserProfileName='string', AppType='JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway', AppName='string', SpaceName='string' )
string
[REQUIRED]
The domain ID.
string
The user profile name.
string
[REQUIRED]
The type of app.
string
[REQUIRED]
The name of the app.
string
The name of the space.
dict
Response Syntax
{ 'AppArn': 'string', 'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway', 'AppName': 'string', 'DomainId': 'string', 'UserProfileName': 'string', 'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending', 'LastHealthCheckTimestamp': datetime(2015, 1, 1), 'LastUserActivityTimestamp': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'FailureReason': 'string', 'ResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'SpaceName': 'string' }
Response Structure
(dict) --
AppArn (string) --
The Amazon Resource Name (ARN) of the app.
AppType (string) --
The type of app.
AppName (string) --
The name of the app.
DomainId (string) --
The domain ID.
UserProfileName (string) --
The user profile name.
Status (string) --
The status.
LastHealthCheckTimestamp (datetime) --
The timestamp of the last health check.
LastUserActivityTimestamp (datetime) --
The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp .
CreationTime (datetime) --
The creation time.
FailureReason (string) --
The failure reason.
ResourceSpec (dict) --
The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
SpaceName (string) --
The name of the space.
{'DefaultSpaceSettings': {'ExecutionRole': 'string', 'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}], 'DefaultResourceSpec': {'InstanceType': 'system ' '| ' 'ml.t3.micro ' '| ' 'ml.t3.small ' '| ' 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.8xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.16xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.8xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.16xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.12xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5.24xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.p3dn.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge', 'LifecycleConfigArn': 'string', 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string'}, 'LifecycleConfigArns': ['string']}, 'KernelGatewayAppSettings': {'CustomImages': [{'AppImageConfigName': 'string', 'ImageName': 'string', 'ImageVersionNumber': 'integer'}], 'DefaultResourceSpec': {'InstanceType': 'system ' '| ' 'ml.t3.micro ' '| ' 'ml.t3.small ' '| ' 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.8xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.16xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.8xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.16xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.12xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5.24xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.p3dn.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge', 'LifecycleConfigArn': 'string', 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string'}, 'LifecycleConfigArns': ['string']}, 'SecurityGroups': ['string']}, 'DefaultUserSettings': {'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}]}}}
The description of the domain.
See also: AWS API Documentation
Request Syntax
client.describe_domain( DomainId='string' )
string
[REQUIRED]
The domain ID.
dict
Response Syntax
{ 'DomainArn': 'string', 'DomainId': 'string', 'DomainName': 'string', 'HomeEfsFileSystemId': 'string', 'SingleSignOnManagedApplicationInstanceId': 'string', 'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'FailureReason': 'string', 'AuthMode': 'SSO'|'IAM', 'DefaultUserSettings': { 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'SharingSettings': { 'NotebookOutputOption': 'Allowed'|'Disabled', 'S3OutputPath': 'string', 'S3KmsKeyId': 'string' }, 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] }, 'TensorBoardAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'RStudioServerProAppSettings': { 'AccessStatus': 'ENABLED'|'DISABLED', 'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER' }, 'RSessionAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ] }, 'CanvasAppSettings': { 'TimeSeriesForecastingSettings': { 'Status': 'ENABLED'|'DISABLED', 'AmazonForecastRoleArn': 'string' } } }, 'AppNetworkAccessType': 'PublicInternetOnly'|'VpcOnly', 'HomeEfsFileSystemKmsKeyId': 'string', 'SubnetIds': [ 'string', ], 'Url': 'string', 'VpcId': 'string', 'KmsKeyId': 'string', 'DomainSettings': { 'SecurityGroupIds': [ 'string', ], 'RStudioServerProDomainSettings': { 'DomainExecutionRoleArn': 'string', 'RStudioConnectUrl': 'string', 'RStudioPackageManagerUrl': 'string', 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'ExecutionRoleIdentityConfig': 'USER_PROFILE_NAME'|'DISABLED' }, 'AppSecurityGroupManagement': 'Service'|'Customer', 'SecurityGroupIdForDomainBoundary': 'string', 'DefaultSpaceSettings': { 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] } } }
Response Structure
(dict) --
DomainArn (string) --
The domain's Amazon Resource Name (ARN).
DomainId (string) --
The domain ID.
DomainName (string) --
The domain name.
HomeEfsFileSystemId (string) --
The ID of the Amazon Elastic File System (EFS) managed by this Domain.
SingleSignOnManagedApplicationInstanceId (string) --
The IAM Identity Center managed application instance ID.
Status (string) --
The status.
CreationTime (datetime) --
The creation time.
LastModifiedTime (datetime) --
The last modified time.
FailureReason (string) --
The failure reason.
AuthMode (string) --
The domain's authentication mode.
DefaultUserSettings (dict) --
Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.
ExecutionRole (string) --
The execution role for the user.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .
Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .
Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
(string) --
SharingSettings (dict) --
Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption (string) --
Whether to include the notebook cell output when sharing the notebook. The default is Disabled .
S3OutputPath (string) --
When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.
S3KmsKeyId (string) --
When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings (dict) --
The Jupyter server's app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) --
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The kernel gateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) --
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) --
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
TensorBoardAppSettings (dict) --
The TensorBoard app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings (dict) --
A collection of settings that configure user interaction with the RStudioServerPro app.
AccessStatus (string) --
Indicates whether the current user has access to the RStudioServerPro app.
UserGroup (string) --
The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.
RSessionAppSettings (dict) --
A collection of settings that configure the RSessionGateway app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a RSession app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) --
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) --
The name of the AppImageConfig.
CanvasAppSettings (dict) --
The Canvas app settings.
TimeSeriesForecastingSettings (dict) --
Time series forecast settings for the Canvas app.
Status (string) --
Describes whether time series forecasting is enabled or disabled in the Canvas app.
AmazonForecastRoleArn (string) --
The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
AppNetworkAccessType (string) --
Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly .
PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access
VpcOnly - All Studio traffic is through the specified VPC and subnets
HomeEfsFileSystemKmsKeyId (string) --
Use KmsKeyId .
SubnetIds (list) --
The VPC subnets that Studio uses for communication.
(string) --
Url (string) --
The domain's URL.
VpcId (string) --
The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
KmsKeyId (string) --
The Amazon Web Services KMS customer managed key used to encrypt the EFS volume attached to the domain.
DomainSettings (dict) --
A collection of Domain settings.
SecurityGroupIds (list) --
The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
(string) --
RStudioServerProDomainSettings (dict) --
A collection of settings that configure the RStudioServerPro Domain-level app.
DomainExecutionRoleArn (string) --
The ARN of the execution role for the RStudioServerPro Domain-level app.
RStudioConnectUrl (string) --
A URL pointing to an RStudio Connect server.
RStudioPackageManagerUrl (string) --
A URL pointing to an RStudio Package Manager server.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
ExecutionRoleIdentityConfig (string) --
The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
AppSecurityGroupManagement (string) --
The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.
SecurityGroupIdForDomainBoundary (string) --
The ID of the security group that authorizes traffic between the RSessionGateway apps and the RStudioServerPro app.
DefaultSpaceSettings (dict) --
The default settings used to create a space.
ExecutionRole (string) --
The execution role for the space.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud that the space uses for communication.
(string) --
JupyterServerAppSettings (dict) --
The JupyterServer app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) --
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The KernelGateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) --
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) --
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
{'PendingDeploymentSummary': {'ShadowProductionVariants': [{'AcceleratorType': 'ml.eia1.medium ' '| ' 'ml.eia1.large ' '| ' 'ml.eia1.xlarge ' '| ' 'ml.eia2.medium ' '| ' 'ml.eia2.large ' '| ' 'ml.eia2.xlarge', 'CurrentInstanceCount': 'integer', 'CurrentServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'CurrentWeight': 'float', 'DeployedImages': [{'ResolutionTime': 'timestamp', 'ResolvedImage': 'string', 'SpecifiedImage': 'string'}], 'DesiredInstanceCount': 'integer', 'DesiredServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'DesiredWeight': 'float', 'InstanceType': 'ml.t2.medium ' '| ' 'ml.t2.large ' '| ' 'ml.t2.xlarge ' '| ' 'ml.t2.2xlarge ' '| ' 'ml.m4.xlarge ' '| ' 'ml.m4.2xlarge ' '| ' 'ml.m4.4xlarge ' '| ' 'ml.m4.10xlarge ' '| ' 'ml.m4.16xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c4.large ' '| ' 'ml.c4.xlarge ' '| ' 'ml.c4.2xlarge ' '| ' 'ml.c4.4xlarge ' '| ' 'ml.c4.8xlarge ' '| ' 'ml.p2.xlarge ' '| ' 'ml.p2.8xlarge ' '| ' 'ml.p2.16xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5d.large ' '| ' 'ml.c5d.xlarge ' '| ' 'ml.c5d.2xlarge ' '| ' 'ml.c5d.4xlarge ' '| ' 'ml.c5d.9xlarge ' '| ' 'ml.c5d.18xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.r5d.large ' '| ' 'ml.r5d.xlarge ' '| ' 'ml.r5d.2xlarge ' '| ' 'ml.r5d.4xlarge ' '| ' 'ml.r5d.12xlarge ' '| ' 'ml.r5d.24xlarge ' '| ' 'ml.inf1.xlarge ' '| ' 'ml.inf1.2xlarge ' '| ' 'ml.inf1.6xlarge ' '| ' 'ml.inf1.24xlarge ' '| ' 'ml.c6i.large ' '| ' 'ml.c6i.xlarge ' '| ' 'ml.c6i.2xlarge ' '| ' 'ml.c6i.4xlarge ' '| ' 'ml.c6i.8xlarge ' '| ' 'ml.c6i.12xlarge ' '| ' 'ml.c6i.16xlarge ' '| ' 'ml.c6i.24xlarge ' '| ' 'ml.c6i.32xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge ' '| ' 'ml.p4d.24xlarge ' '| ' 'ml.c7g.large ' '| ' 'ml.c7g.xlarge ' '| ' 'ml.c7g.2xlarge ' '| ' 'ml.c7g.4xlarge ' '| ' 'ml.c7g.8xlarge ' '| ' 'ml.c7g.12xlarge ' '| ' 'ml.c7g.16xlarge ' '| ' 'ml.m6g.large ' '| ' 'ml.m6g.xlarge ' '| ' 'ml.m6g.2xlarge ' '| ' 'ml.m6g.4xlarge ' '| ' 'ml.m6g.8xlarge ' '| ' 'ml.m6g.12xlarge ' '| ' 'ml.m6g.16xlarge ' '| ' 'ml.m6gd.large ' '| ' 'ml.m6gd.xlarge ' '| ' 'ml.m6gd.2xlarge ' '| ' 'ml.m6gd.4xlarge ' '| ' 'ml.m6gd.8xlarge ' '| ' 'ml.m6gd.12xlarge ' '| ' 'ml.m6gd.16xlarge ' '| ' 'ml.c6g.large ' '| ' 'ml.c6g.xlarge ' '| ' 'ml.c6g.2xlarge ' '| ' 'ml.c6g.4xlarge ' '| ' 'ml.c6g.8xlarge ' '| ' 'ml.c6g.12xlarge ' '| ' 'ml.c6g.16xlarge ' '| ' 'ml.c6gd.large ' '| ' 'ml.c6gd.xlarge ' '| ' 'ml.c6gd.2xlarge ' '| ' 'ml.c6gd.4xlarge ' '| ' 'ml.c6gd.8xlarge ' '| ' 'ml.c6gd.12xlarge ' '| ' 'ml.c6gd.16xlarge ' '| ' 'ml.c6gn.large ' '| ' 'ml.c6gn.xlarge ' '| ' 'ml.c6gn.2xlarge ' '| ' 'ml.c6gn.4xlarge ' '| ' 'ml.c6gn.8xlarge ' '| ' 'ml.c6gn.12xlarge ' '| ' 'ml.c6gn.16xlarge ' '| ' 'ml.r6g.large ' '| ' 'ml.r6g.xlarge ' '| ' 'ml.r6g.2xlarge ' '| ' 'ml.r6g.4xlarge ' '| ' 'ml.r6g.8xlarge ' '| ' 'ml.r6g.12xlarge ' '| ' 'ml.r6g.16xlarge ' '| ' 'ml.r6gd.large ' '| ' 'ml.r6gd.xlarge ' '| ' 'ml.r6gd.2xlarge ' '| ' 'ml.r6gd.4xlarge ' '| ' 'ml.r6gd.8xlarge ' '| ' 'ml.r6gd.12xlarge ' '| ' 'ml.r6gd.16xlarge', 'VariantName': 'string', 'VariantStatus': [{'StartTime': 'timestamp', 'Status': 'Creating ' '| ' 'Updating ' '| ' 'Deleting ' '| ' 'ActivatingTraffic ' '| ' 'Baking', 'StatusMessage': 'string'}]}]}, 'ShadowProductionVariants': [{'CurrentInstanceCount': 'integer', 'CurrentServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'CurrentWeight': 'float', 'DeployedImages': [{'ResolutionTime': 'timestamp', 'ResolvedImage': 'string', 'SpecifiedImage': 'string'}], 'DesiredInstanceCount': 'integer', 'DesiredServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'DesiredWeight': 'float', 'VariantName': 'string', 'VariantStatus': [{'StartTime': 'timestamp', 'Status': 'Creating | ' 'Updating | ' 'Deleting | ' 'ActivatingTraffic ' '| Baking', 'StatusMessage': 'string'}]}]}
Returns the description of an endpoint.
See also: AWS API Documentation
Request Syntax
client.describe_endpoint( EndpointName='string' )
string
[REQUIRED]
The name of the endpoint.
dict
Response Syntax
{ 'EndpointName': 'string', 'EndpointArn': 'string', 'EndpointConfigName': 'string', 'ProductionVariants': [ { 'VariantName': 'string', 'DeployedImages': [ { 'SpecifiedImage': 'string', 'ResolvedImage': 'string', 'ResolutionTime': datetime(2015, 1, 1) }, ], 'CurrentWeight': ..., 'DesiredWeight': ..., 'CurrentInstanceCount': 123, 'DesiredInstanceCount': 123, 'VariantStatus': [ { 'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking', 'StatusMessage': 'string', 'StartTime': datetime(2015, 1, 1) }, ], 'CurrentServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'DesiredServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 } }, ], 'DataCaptureConfig': { 'EnableCapture': True|False, 'CaptureStatus': 'Started'|'Stopped', 'CurrentSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed', 'FailureReason': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'LastDeploymentConfig': { 'BlueGreenUpdatePolicy': { 'TrafficRoutingConfiguration': { 'Type': 'ALL_AT_ONCE'|'CANARY'|'LINEAR', 'WaitIntervalInSeconds': 123, 'CanarySize': { 'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT', 'Value': 123 }, 'LinearStepSize': { 'Type': 'INSTANCE_COUNT'|'CAPACITY_PERCENT', 'Value': 123 } }, 'TerminationWaitInSeconds': 123, 'MaximumExecutionTimeoutInSeconds': 123 }, 'AutoRollbackConfiguration': { 'Alarms': [ { 'AlarmName': 'string' }, ] } }, 'AsyncInferenceConfig': { 'ClientConfig': { 'MaxConcurrentInvocationsPerInstance': 123 }, 'OutputConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'NotificationConfig': { 'SuccessTopic': 'string', 'ErrorTopic': 'string' } } }, 'PendingDeploymentSummary': { 'EndpointConfigName': 'string', 'ProductionVariants': [ { 'VariantName': 'string', 'DeployedImages': [ { 'SpecifiedImage': 'string', 'ResolvedImage': 'string', 'ResolutionTime': datetime(2015, 1, 1) }, ], 'CurrentWeight': ..., 'DesiredWeight': ..., 'CurrentInstanceCount': 123, 'DesiredInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge', 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'VariantStatus': [ { 'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking', 'StatusMessage': 'string', 'StartTime': datetime(2015, 1, 1) }, ], 'CurrentServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'DesiredServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 } }, ], 'StartTime': datetime(2015, 1, 1), 'ShadowProductionVariants': [ { 'VariantName': 'string', 'DeployedImages': [ { 'SpecifiedImage': 'string', 'ResolvedImage': 'string', 'ResolutionTime': datetime(2015, 1, 1) }, ], 'CurrentWeight': ..., 'DesiredWeight': ..., 'CurrentInstanceCount': 123, 'DesiredInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge', 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'VariantStatus': [ { 'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking', 'StatusMessage': 'string', 'StartTime': datetime(2015, 1, 1) }, ], 'CurrentServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'DesiredServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 } }, ] }, 'ExplainerConfig': { 'ClarifyExplainerConfig': { 'EnableExplanations': 'string', 'InferenceConfig': { 'FeaturesAttribute': 'string', 'ContentTemplate': 'string', 'MaxRecordCount': 123, 'MaxPayloadInMB': 123, 'ProbabilityIndex': 123, 'LabelIndex': 123, 'ProbabilityAttribute': 'string', 'LabelAttribute': 'string', 'LabelHeaders': [ 'string', ], 'FeatureHeaders': [ 'string', ], 'FeatureTypes': [ 'numerical'|'categorical'|'text', ] }, 'ShapConfig': { 'ShapBaselineConfig': { 'MimeType': 'string', 'ShapBaseline': 'string', 'ShapBaselineUri': 'string' }, 'NumberOfSamples': 123, 'UseLogit': True|False, 'Seed': 123, 'TextConfig': { 'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx', 'Granularity': 'token'|'sentence'|'paragraph' } } } }, 'ShadowProductionVariants': [ { 'VariantName': 'string', 'DeployedImages': [ { 'SpecifiedImage': 'string', 'ResolvedImage': 'string', 'ResolutionTime': datetime(2015, 1, 1) }, ], 'CurrentWeight': ..., 'DesiredWeight': ..., 'CurrentInstanceCount': 123, 'DesiredInstanceCount': 123, 'VariantStatus': [ { 'Status': 'Creating'|'Updating'|'Deleting'|'ActivatingTraffic'|'Baking', 'StatusMessage': 'string', 'StartTime': datetime(2015, 1, 1) }, ], 'CurrentServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'DesiredServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 } }, ] }
Response Structure
(dict) --
EndpointName (string) --
Name of the endpoint.
EndpointArn (string) --
The Amazon Resource Name (ARN) of the endpoint.
EndpointConfigName (string) --
The name of the endpoint configuration associated with this endpoint.
ProductionVariants (list) --
An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
(dict) --
Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.
VariantName (string) --
The name of the variant.
DeployedImages (list) --
An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .
(dict) --
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.
If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .
SpecifiedImage (string) --
The image path you specified when you created the model.
ResolvedImage (string) --
The specific digest path of the image hosted in this ProductionVariant .
ResolutionTime (datetime) --
The date and time when the image path for the model resolved to the ResolvedImage
CurrentWeight (float) --
The weight associated with the variant.
DesiredWeight (float) --
The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.
CurrentInstanceCount (integer) --
The number of instances associated with the variant.
DesiredInstanceCount (integer) --
The number of instances requested in the UpdateEndpointWeightsAndCapacities request.
VariantStatus (list) --
The endpoint variant status which describes the current deployment stage status or operational status.
(dict) --
Describes the status of the production variant.
Status (string) --
The endpoint variant status which describes the current deployment stage status or operational status.
Creating : Creating inference resources for the production variant.
Deleting : Terminating inference resources for the production variant.
Updating : Updating capacity for the production variant.
ActivatingTraffic : Turning on traffic for the production variant.
Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
StatusMessage (string) --
A message that describes the status of the production variant.
StartTime (datetime) --
The start time of the current status change.
CurrentServerlessConfig (dict) --
The serverless configuration for the endpoint.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
DesiredServerlessConfig (dict) --
The serverless configuration requested for the endpoint update.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
DataCaptureConfig (dict) --
The currently active data capture configuration used by your Endpoint.
EnableCapture (boolean) --
Whether data capture is enabled or disabled.
CaptureStatus (string) --
Whether data capture is currently functional.
CurrentSamplingPercentage (integer) --
The percentage of requests being captured by your Endpoint.
DestinationS3Uri (string) --
The Amazon S3 location being used to capture the data.
KmsKeyId (string) --
The KMS key being used to encrypt the data in Amazon S3.
EndpointStatus (string) --
The status of the endpoint.
OutOfService : Endpoint is not available to take incoming requests.
Creating : CreateEndpoint is executing.
Updating : UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.
SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.
RollingBack : Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.
InService : Endpoint is available to process incoming requests.
Deleting : DeleteEndpoint is executing.
Failed : Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
FailureReason (string) --
If the status of the endpoint is Failed , the reason why it failed.
CreationTime (datetime) --
A timestamp that shows when the endpoint was created.
LastModifiedTime (datetime) --
A timestamp that shows when the endpoint was last modified.
LastDeploymentConfig (dict) --
The most recent deployment configuration for the endpoint.
BlueGreenUpdatePolicy (dict) --
Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.
TrafficRoutingConfiguration (dict) --
Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.
Type (string) --
Traffic routing strategy type.
ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
CANARY : Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic.
LINEAR : Endpoint traffic shifts to the new fleet in n steps of a configurable size.
WaitIntervalInSeconds (integer) --
The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.
CanarySize (dict) --
Batch size for the first step to turn on traffic on the new endpoint fleet. Value must be less than or equal to 50% of the variant's total instance count.
Type (string) --
Specifies the endpoint capacity type.
INSTANCE_COUNT : The endpoint activates based on the number of instances.
CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
Value (integer) --
Defines the capacity size, either as a number of instances or a capacity percentage.
LinearStepSize (dict) --
Batch size for each step to turn on traffic on the new endpoint fleet. Value must be 10-50% of the variant's total instance count.
Type (string) --
Specifies the endpoint capacity type.
INSTANCE_COUNT : The endpoint activates based on the number of instances.
CAPACITY_PERCENT : The endpoint activates based on the specified percentage of capacity.
Value (integer) --
Defines the capacity size, either as a number of instances or a capacity percentage.
TerminationWaitInSeconds (integer) --
Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.
MaximumExecutionTimeoutInSeconds (integer) --
Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in TerminationWaitInSeconds and WaitIntervalInSeconds .
AutoRollbackConfiguration (dict) --
Automatic rollback configuration for handling endpoint deployment failures and recovery.
Alarms (list) --
List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.
(dict) --
An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.
AlarmName (string) --
The name of a CloudWatch alarm in your account.
AsyncInferenceConfig (dict) --
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
ClientConfig (dict) --
Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance (integer) --
The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.
OutputConfig (dict) --
Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath (string) --
The Amazon S3 location to upload inference responses to.
NotificationConfig (dict) --
Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic (string) --
Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic (string) --
Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
PendingDeploymentSummary (dict) --
Returns the summary of an in-progress deployment. This field is only returned when the endpoint is creating or updating with a new endpoint configuration.
EndpointConfigName (string) --
The name of the endpoint configuration used in the deployment.
ProductionVariants (list) --
List of PendingProductionVariantSummary objects.
(dict) --
The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.
VariantName (string) --
The name of the variant.
DeployedImages (list) --
An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .
(dict) --
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.
If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .
SpecifiedImage (string) --
The image path you specified when you created the model.
ResolvedImage (string) --
The specific digest path of the image hosted in this ProductionVariant .
ResolutionTime (datetime) --
The date and time when the image path for the model resolved to the ResolvedImage
CurrentWeight (float) --
The weight associated with the variant.
DesiredWeight (float) --
The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
CurrentInstanceCount (integer) --
The number of instances associated with the variant.
DesiredInstanceCount (integer) --
The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
InstanceType (string) --
The type of instances associated with the variant.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
VariantStatus (list) --
The endpoint variant status which describes the current deployment stage status or operational status.
(dict) --
Describes the status of the production variant.
Status (string) --
The endpoint variant status which describes the current deployment stage status or operational status.
Creating : Creating inference resources for the production variant.
Deleting : Terminating inference resources for the production variant.
Updating : Updating capacity for the production variant.
ActivatingTraffic : Turning on traffic for the production variant.
Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
StatusMessage (string) --
A message that describes the status of the production variant.
StartTime (datetime) --
The start time of the current status change.
CurrentServerlessConfig (dict) --
The serverless configuration for the endpoint.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
DesiredServerlessConfig (dict) --
The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
StartTime (datetime) --
The start time of the deployment.
ShadowProductionVariants (list) --
Array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .
(dict) --
The production variant summary for a deployment when an endpoint is creating or updating with the CreateEndpoint or UpdateEndpoint operations. Describes the VariantStatus , weight and capacity for a production variant associated with an endpoint.
VariantName (string) --
The name of the variant.
DeployedImages (list) --
An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .
(dict) --
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.
If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .
SpecifiedImage (string) --
The image path you specified when you created the model.
ResolvedImage (string) --
The specific digest path of the image hosted in this ProductionVariant .
ResolutionTime (datetime) --
The date and time when the image path for the model resolved to the ResolvedImage
CurrentWeight (float) --
The weight associated with the variant.
DesiredWeight (float) --
The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
CurrentInstanceCount (integer) --
The number of instances associated with the variant.
DesiredInstanceCount (integer) --
The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
InstanceType (string) --
The type of instances associated with the variant.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
VariantStatus (list) --
The endpoint variant status which describes the current deployment stage status or operational status.
(dict) --
Describes the status of the production variant.
Status (string) --
The endpoint variant status which describes the current deployment stage status or operational status.
Creating : Creating inference resources for the production variant.
Deleting : Terminating inference resources for the production variant.
Updating : Updating capacity for the production variant.
ActivatingTraffic : Turning on traffic for the production variant.
Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
StatusMessage (string) --
A message that describes the status of the production variant.
StartTime (datetime) --
The start time of the current status change.
CurrentServerlessConfig (dict) --
The serverless configuration for the endpoint.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
DesiredServerlessConfig (dict) --
The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
ExplainerConfig (dict) --
The configuration parameters for an explainer.
ClarifyExplainerConfig (dict) --
A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.
EnableExplanations (string) --
A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.
InferenceConfig (dict) --
The inference configuration parameter for the model container.
FeaturesAttribute (string) --
Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .
ContentTemplate (string) --
A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.
MaxRecordCount (integer) --
The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.
MaxPayloadInMB (integer) --
The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.
ProbabilityIndex (integer) --
A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.
Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .
Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .
LabelIndex (integer) --
A zero-based index used to extract a label header or list of label headers from model container output in CSV format.
Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .
ProbabilityAttribute (string) --
A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.
Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .
LabelAttribute (string) --
A JMESPath expression used to locate the list of label headers in the model container output.
Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]
LabelHeaders (list) --
For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.
(string) --
FeatureHeaders (list) --
The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.
(string) --
FeatureTypes (list) --
A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.
(string) --
ShapConfig (dict) --
The configuration for SHAP analysis.
ShapBaselineConfig (dict) --
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
MimeType (string) --
The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .
ShapBaseline (string) --
The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.
ShapBaselineUri (string) --
The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.
NumberOfSamples (integer) --
The number of samples to be used for analysis by the Kernal SHAP algorithm.
Note
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
UseLogit (boolean) --
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
Seed (integer) --
The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
TextConfig (dict) --
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
Language (string) --
Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.
Note
For a mix of multiple languages, use code 'xx' .
Granularity (string) --
The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.
ShadowProductionVariants (list) --
Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .
(dict) --
Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.
VariantName (string) --
The name of the variant.
DeployedImages (list) --
An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .
(dict) --
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.
If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .
SpecifiedImage (string) --
The image path you specified when you created the model.
ResolvedImage (string) --
The specific digest path of the image hosted in this ProductionVariant .
ResolutionTime (datetime) --
The date and time when the image path for the model resolved to the ResolvedImage
CurrentWeight (float) --
The weight associated with the variant.
DesiredWeight (float) --
The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.
CurrentInstanceCount (integer) --
The number of instances associated with the variant.
DesiredInstanceCount (integer) --
The number of instances requested in the UpdateEndpointWeightsAndCapacities request.
VariantStatus (list) --
The endpoint variant status which describes the current deployment stage status or operational status.
(dict) --
Describes the status of the production variant.
Status (string) --
The endpoint variant status which describes the current deployment stage status or operational status.
Creating : Creating inference resources for the production variant.
Deleting : Terminating inference resources for the production variant.
Updating : Updating capacity for the production variant.
ActivatingTraffic : Turning on traffic for the production variant.
Baking : Waiting period to monitor the CloudWatch alarms in the automatic rollback configuration.
StatusMessage (string) --
A message that describes the status of the production variant.
StartTime (datetime) --
The start time of the current status change.
CurrentServerlessConfig (dict) --
The serverless configuration for the endpoint.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
DesiredServerlessConfig (dict) --
The serverless configuration requested for the endpoint update.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
{'ShadowProductionVariants': [{'AcceleratorType': 'ml.eia1.medium | ' 'ml.eia1.large | ' 'ml.eia1.xlarge | ' 'ml.eia2.medium | ' 'ml.eia2.large | ' 'ml.eia2.xlarge', 'ContainerStartupHealthCheckTimeoutInSeconds': 'integer', 'CoreDumpConfig': {'DestinationS3Uri': 'string', 'KmsKeyId': 'string'}, 'InitialInstanceCount': 'integer', 'InitialVariantWeight': 'float', 'InstanceType': 'ml.t2.medium | ml.t2.large | ' 'ml.t2.xlarge | ml.t2.2xlarge | ' 'ml.m4.xlarge | ml.m4.2xlarge | ' 'ml.m4.4xlarge | ml.m4.10xlarge ' '| ml.m4.16xlarge | ml.m5.large ' '| ml.m5.xlarge | ml.m5.2xlarge ' '| ml.m5.4xlarge | ' 'ml.m5.12xlarge | ' 'ml.m5.24xlarge | ml.m5d.large ' '| ml.m5d.xlarge | ' 'ml.m5d.2xlarge | ' 'ml.m5d.4xlarge | ' 'ml.m5d.12xlarge | ' 'ml.m5d.24xlarge | ml.c4.large ' '| ml.c4.xlarge | ml.c4.2xlarge ' '| ml.c4.4xlarge | ' 'ml.c4.8xlarge | ml.p2.xlarge | ' 'ml.p2.8xlarge | ml.p2.16xlarge ' '| ml.p3.2xlarge | ' 'ml.p3.8xlarge | ml.p3.16xlarge ' '| ml.c5.large | ml.c5.xlarge | ' 'ml.c5.2xlarge | ml.c5.4xlarge ' '| ml.c5.9xlarge | ' 'ml.c5.18xlarge | ml.c5d.large ' '| ml.c5d.xlarge | ' 'ml.c5d.2xlarge | ' 'ml.c5d.4xlarge | ' 'ml.c5d.9xlarge | ' 'ml.c5d.18xlarge | ' 'ml.g4dn.xlarge | ' 'ml.g4dn.2xlarge | ' 'ml.g4dn.4xlarge | ' 'ml.g4dn.8xlarge | ' 'ml.g4dn.12xlarge | ' 'ml.g4dn.16xlarge | ml.r5.large ' '| ml.r5.xlarge | ml.r5.2xlarge ' '| ml.r5.4xlarge | ' 'ml.r5.12xlarge | ' 'ml.r5.24xlarge | ml.r5d.large ' '| ml.r5d.xlarge | ' 'ml.r5d.2xlarge | ' 'ml.r5d.4xlarge | ' 'ml.r5d.12xlarge | ' 'ml.r5d.24xlarge | ' 'ml.inf1.xlarge | ' 'ml.inf1.2xlarge | ' 'ml.inf1.6xlarge | ' 'ml.inf1.24xlarge | ' 'ml.c6i.large | ml.c6i.xlarge | ' 'ml.c6i.2xlarge | ' 'ml.c6i.4xlarge | ' 'ml.c6i.8xlarge | ' 'ml.c6i.12xlarge | ' 'ml.c6i.16xlarge | ' 'ml.c6i.24xlarge | ' 'ml.c6i.32xlarge | ml.g5.xlarge ' '| ml.g5.2xlarge | ' 'ml.g5.4xlarge | ml.g5.8xlarge ' '| ml.g5.12xlarge | ' 'ml.g5.16xlarge | ' 'ml.g5.24xlarge | ' 'ml.g5.48xlarge | ' 'ml.p4d.24xlarge | ml.c7g.large ' '| ml.c7g.xlarge | ' 'ml.c7g.2xlarge | ' 'ml.c7g.4xlarge | ' 'ml.c7g.8xlarge | ' 'ml.c7g.12xlarge | ' 'ml.c7g.16xlarge | ml.m6g.large ' '| ml.m6g.xlarge | ' 'ml.m6g.2xlarge | ' 'ml.m6g.4xlarge | ' 'ml.m6g.8xlarge | ' 'ml.m6g.12xlarge | ' 'ml.m6g.16xlarge | ' 'ml.m6gd.large | ml.m6gd.xlarge ' '| ml.m6gd.2xlarge | ' 'ml.m6gd.4xlarge | ' 'ml.m6gd.8xlarge | ' 'ml.m6gd.12xlarge | ' 'ml.m6gd.16xlarge | ' 'ml.c6g.large | ml.c6g.xlarge | ' 'ml.c6g.2xlarge | ' 'ml.c6g.4xlarge | ' 'ml.c6g.8xlarge | ' 'ml.c6g.12xlarge | ' 'ml.c6g.16xlarge | ' 'ml.c6gd.large | ml.c6gd.xlarge ' '| ml.c6gd.2xlarge | ' 'ml.c6gd.4xlarge | ' 'ml.c6gd.8xlarge | ' 'ml.c6gd.12xlarge | ' 'ml.c6gd.16xlarge | ' 'ml.c6gn.large | ml.c6gn.xlarge ' '| ml.c6gn.2xlarge | ' 'ml.c6gn.4xlarge | ' 'ml.c6gn.8xlarge | ' 'ml.c6gn.12xlarge | ' 'ml.c6gn.16xlarge | ' 'ml.r6g.large | ml.r6g.xlarge | ' 'ml.r6g.2xlarge | ' 'ml.r6g.4xlarge | ' 'ml.r6g.8xlarge | ' 'ml.r6g.12xlarge | ' 'ml.r6g.16xlarge | ' 'ml.r6gd.large | ml.r6gd.xlarge ' '| ml.r6gd.2xlarge | ' 'ml.r6gd.4xlarge | ' 'ml.r6gd.8xlarge | ' 'ml.r6gd.12xlarge | ' 'ml.r6gd.16xlarge', 'ModelDataDownloadTimeoutInSeconds': 'integer', 'ModelName': 'string', 'ServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'VariantName': 'string', 'VolumeSizeInGB': 'integer'}]}
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
See also: AWS API Documentation
Request Syntax
client.describe_endpoint_config( EndpointConfigName='string' )
string
[REQUIRED]
The name of the endpoint configuration.
dict
Response Syntax
{ 'EndpointConfigName': 'string', 'EndpointConfigArn': 'string', 'ProductionVariants': [ { 'VariantName': 'string', 'ModelName': 'string', 'InitialInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge', 'InitialVariantWeight': ..., 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'CoreDumpConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'ServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'VolumeSizeInGB': 123, 'ModelDataDownloadTimeoutInSeconds': 123, 'ContainerStartupHealthCheckTimeoutInSeconds': 123 }, ], 'DataCaptureConfig': { 'EnableCapture': True|False, 'InitialSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'CaptureOptions': [ { 'CaptureMode': 'Input'|'Output' }, ], 'CaptureContentTypeHeader': { 'CsvContentTypes': [ 'string', ], 'JsonContentTypes': [ 'string', ] } }, 'KmsKeyId': 'string', 'CreationTime': datetime(2015, 1, 1), 'AsyncInferenceConfig': { 'ClientConfig': { 'MaxConcurrentInvocationsPerInstance': 123 }, 'OutputConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string', 'NotificationConfig': { 'SuccessTopic': 'string', 'ErrorTopic': 'string' } } }, 'ExplainerConfig': { 'ClarifyExplainerConfig': { 'EnableExplanations': 'string', 'InferenceConfig': { 'FeaturesAttribute': 'string', 'ContentTemplate': 'string', 'MaxRecordCount': 123, 'MaxPayloadInMB': 123, 'ProbabilityIndex': 123, 'LabelIndex': 123, 'ProbabilityAttribute': 'string', 'LabelAttribute': 'string', 'LabelHeaders': [ 'string', ], 'FeatureHeaders': [ 'string', ], 'FeatureTypes': [ 'numerical'|'categorical'|'text', ] }, 'ShapConfig': { 'ShapBaselineConfig': { 'MimeType': 'string', 'ShapBaseline': 'string', 'ShapBaselineUri': 'string' }, 'NumberOfSamples': 123, 'UseLogit': True|False, 'Seed': 123, 'TextConfig': { 'Language': 'af'|'sq'|'ar'|'hy'|'eu'|'bn'|'bg'|'ca'|'zh'|'hr'|'cs'|'da'|'nl'|'en'|'et'|'fi'|'fr'|'de'|'el'|'gu'|'he'|'hi'|'hu'|'is'|'id'|'ga'|'it'|'kn'|'ky'|'lv'|'lt'|'lb'|'mk'|'ml'|'mr'|'ne'|'nb'|'fa'|'pl'|'pt'|'ro'|'ru'|'sa'|'sr'|'tn'|'si'|'sk'|'sl'|'es'|'sv'|'tl'|'ta'|'tt'|'te'|'tr'|'uk'|'ur'|'yo'|'lij'|'xx', 'Granularity': 'token'|'sentence'|'paragraph' } } } }, 'ShadowProductionVariants': [ { 'VariantName': 'string', 'ModelName': 'string', 'InitialInstanceCount': 123, 'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge'|'ml.c6i.large'|'ml.c6i.xlarge'|'ml.c6i.2xlarge'|'ml.c6i.4xlarge'|'ml.c6i.8xlarge'|'ml.c6i.12xlarge'|'ml.c6i.16xlarge'|'ml.c6i.24xlarge'|'ml.c6i.32xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.12xlarge'|'ml.g5.16xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.p4d.24xlarge'|'ml.c7g.large'|'ml.c7g.xlarge'|'ml.c7g.2xlarge'|'ml.c7g.4xlarge'|'ml.c7g.8xlarge'|'ml.c7g.12xlarge'|'ml.c7g.16xlarge'|'ml.m6g.large'|'ml.m6g.xlarge'|'ml.m6g.2xlarge'|'ml.m6g.4xlarge'|'ml.m6g.8xlarge'|'ml.m6g.12xlarge'|'ml.m6g.16xlarge'|'ml.m6gd.large'|'ml.m6gd.xlarge'|'ml.m6gd.2xlarge'|'ml.m6gd.4xlarge'|'ml.m6gd.8xlarge'|'ml.m6gd.12xlarge'|'ml.m6gd.16xlarge'|'ml.c6g.large'|'ml.c6g.xlarge'|'ml.c6g.2xlarge'|'ml.c6g.4xlarge'|'ml.c6g.8xlarge'|'ml.c6g.12xlarge'|'ml.c6g.16xlarge'|'ml.c6gd.large'|'ml.c6gd.xlarge'|'ml.c6gd.2xlarge'|'ml.c6gd.4xlarge'|'ml.c6gd.8xlarge'|'ml.c6gd.12xlarge'|'ml.c6gd.16xlarge'|'ml.c6gn.large'|'ml.c6gn.xlarge'|'ml.c6gn.2xlarge'|'ml.c6gn.4xlarge'|'ml.c6gn.8xlarge'|'ml.c6gn.12xlarge'|'ml.c6gn.16xlarge'|'ml.r6g.large'|'ml.r6g.xlarge'|'ml.r6g.2xlarge'|'ml.r6g.4xlarge'|'ml.r6g.8xlarge'|'ml.r6g.12xlarge'|'ml.r6g.16xlarge'|'ml.r6gd.large'|'ml.r6gd.xlarge'|'ml.r6gd.2xlarge'|'ml.r6gd.4xlarge'|'ml.r6gd.8xlarge'|'ml.r6gd.12xlarge'|'ml.r6gd.16xlarge', 'InitialVariantWeight': ..., 'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge', 'CoreDumpConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'ServerlessConfig': { 'MemorySizeInMB': 123, 'MaxConcurrency': 123 }, 'VolumeSizeInGB': 123, 'ModelDataDownloadTimeoutInSeconds': 123, 'ContainerStartupHealthCheckTimeoutInSeconds': 123 }, ] }
Response Structure
(dict) --
EndpointConfigName (string) --
Name of the SageMaker endpoint configuration.
EndpointConfigArn (string) --
The Amazon Resource Name (ARN) of the endpoint configuration.
ProductionVariants (list) --
An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
(dict) --
Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.
VariantName (string) --
The name of the production variant.
ModelName (string) --
The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount (integer) --
Number of instances to launch initially.
InstanceType (string) --
The ML compute instance type.
InitialVariantWeight (float) --
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
CoreDumpConfig (dict) --
Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri (string) --
The Amazon S3 bucket to send the core dump to.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
ServerlessConfig (dict) --
The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currenly only Amazon EBS gp2 storage volumes are supported.
ModelDataDownloadTimeoutInSeconds (integer) --
The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
ContainerStartupHealthCheckTimeoutInSeconds (integer) --
The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
DataCaptureConfig (dict) --
Configuration to control how SageMaker captures inference data.
EnableCapture (boolean) --
Whether data capture should be enabled or disabled (defaults to enabled).
InitialSamplingPercentage (integer) --
The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
DestinationS3Uri (string) --
The Amazon S3 location used to capture the data.
KmsKeyId (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
CaptureOptions (list) --
Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
(dict) --
Specifies data Model Monitor will capture.
CaptureMode (string) --
Specify the boundary of data to capture.
CaptureContentTypeHeader (dict) --
Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
CsvContentTypes (list) --
The list of all content type headers that SageMaker will treat as CSV and capture accordingly.
(string) --
JsonContentTypes (list) --
The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
(string) --
KmsKeyId (string) --
Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
CreationTime (datetime) --
A timestamp that shows when the endpoint configuration was created.
AsyncInferenceConfig (dict) --
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
ClientConfig (dict) --
Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance (integer) --
The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.
OutputConfig (dict) --
Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath (string) --
The Amazon S3 location to upload inference responses to.
NotificationConfig (dict) --
Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic (string) --
Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic (string) --
Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
ExplainerConfig (dict) --
The configuration parameters for an explainer.
ClarifyExplainerConfig (dict) --
A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.
EnableExplanations (string) --
A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See EnableExplanations for additional information.
InferenceConfig (dict) --
The inference configuration parameter for the model container.
FeaturesAttribute (string) --
Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .
ContentTemplate (string) --
A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.
MaxRecordCount (integer) --
The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.
MaxPayloadInMB (integer) --
The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.
ProbabilityIndex (integer) --
A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.
Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .
Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .
LabelIndex (integer) --
A zero-based index used to extract a label header or list of label headers from model container output in CSV format.
Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .
ProbabilityAttribute (string) --
A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.
Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .
LabelAttribute (string) --
A JMESPath expression used to locate the list of label headers in the model container output.
Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]
LabelHeaders (list) --
For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.
(string) --
FeatureHeaders (list) --
The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.
(string) --
FeatureTypes (list) --
A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.
(string) --
ShapConfig (dict) --
The configuration for SHAP analysis.
ShapBaselineConfig (dict) --
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
MimeType (string) --
The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .
ShapBaseline (string) --
The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.
ShapBaselineUri (string) --
The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.
NumberOfSamples (integer) --
The number of samples to be used for analysis by the Kernal SHAP algorithm.
Note
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
UseLogit (boolean) --
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
Seed (integer) --
The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
TextConfig (dict) --
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
Language (string) --
Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.
Note
For a mix of multiple languages, use code 'xx' .
Granularity (string) --
The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.
ShadowProductionVariants (list) --
Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants .If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .
(dict) --
Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights.
VariantName (string) --
The name of the production variant.
ModelName (string) --
The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount (integer) --
Number of instances to launch initially.
InstanceType (string) --
The ML compute instance type.
InitialVariantWeight (float) --
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
AcceleratorType (string) --
The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
CoreDumpConfig (dict) --
Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri (string) --
The Amazon S3 bucket to send the core dump to.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint and UpdateEndpoint requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
ServerlessConfig (dict) --
The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
MemorySizeInMB (integer) --
The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency (integer) --
The maximum number of concurrent invocations your serverless endpoint can process.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currenly only Amazon EBS gp2 storage volumes are supported.
ModelDataDownloadTimeoutInSeconds (integer) --
The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
ContainerStartupHealthCheckTimeoutInSeconds (integer) --
The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
{'OfflineStoreConfig': {'TableFormat': 'Glue | Iceberg'}}
Use this operation to describe a FeatureGroup . The response includes information on the creation time, FeatureGroup name, the unique identifier for each FeatureGroup , and more.
See also: AWS API Documentation
Request Syntax
client.describe_feature_group( FeatureGroupName='string', NextToken='string' )
string
[REQUIRED]
The name of the FeatureGroup you want described.
string
A token to resume pagination of the list of Features ( FeatureDefinitions ). 2,500 Features are returned by default.
dict
Response Syntax
{ 'FeatureGroupArn': 'string', 'FeatureGroupName': 'string', 'RecordIdentifierFeatureName': 'string', 'EventTimeFeatureName': 'string', 'FeatureDefinitions': [ { 'FeatureName': 'string', 'FeatureType': 'Integral'|'Fractional'|'String' }, ], 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'OnlineStoreConfig': { 'SecurityConfig': { 'KmsKeyId': 'string' }, 'EnableOnlineStore': True|False }, 'OfflineStoreConfig': { 'S3StorageConfig': { 'S3Uri': 'string', 'KmsKeyId': 'string', 'ResolvedOutputS3Uri': 'string' }, 'DisableGlueTableCreation': True|False, 'DataCatalogConfig': { 'TableName': 'string', 'Catalog': 'string', 'Database': 'string' }, 'TableFormat': 'Glue'|'Iceberg' }, 'RoleArn': 'string', 'FeatureGroupStatus': 'Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed', 'OfflineStoreStatus': { 'Status': 'Active'|'Blocked'|'Disabled', 'BlockedReason': 'string' }, 'LastUpdateStatus': { 'Status': 'Successful'|'Failed'|'InProgress', 'FailureReason': 'string' }, 'FailureReason': 'string', 'Description': 'string', 'NextToken': 'string', 'OnlineStoreTotalSizeBytes': 123 }
Response Structure
(dict) --
FeatureGroupArn (string) --
The Amazon Resource Name (ARN) of the FeatureGroup .
FeatureGroupName (string) --
he name of the FeatureGroup .
RecordIdentifierFeatureName (string) --
The name of the Feature used for RecordIdentifier , whose value uniquely identifies a record stored in the feature store.
EventTimeFeatureName (string) --
The name of the feature that stores the EventTime of a Record in a FeatureGroup .
An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup . All Records in the FeatureGroup have a corresponding EventTime .
FeatureDefinitions (list) --
A list of the Features in the FeatureGroup . Each feature is defined by a FeatureName and FeatureType .
(dict) --
A list of features. You must include FeatureName and FeatureType . Valid feature FeatureType s are Integral , Fractional and String .
FeatureName (string) --
The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted , write_time , api_invocation_time .
FeatureType (string) --
The value type of a feature. Valid values are Integral, Fractional, or String.
CreationTime (datetime) --
A timestamp indicating when SageMaker created the FeatureGroup .
LastModifiedTime (datetime) --
A timestamp indicating when the feature group was last updated.
OnlineStoreConfig (dict) --
The configuration for the OnlineStore .
SecurityConfig (dict) --
Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your OnlineStore .
KmsKeyId (string) --
The ID of the Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.
The caller (either IAM user or IAM role) of CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :
"kms:Encrypt"
"kms:Decrypt"
"kms:DescribeKey"
"kms:CreateGrant"
"kms:RetireGrant"
"kms:ReEncryptFrom"
"kms:ReEncryptTo"
"kms:GenerateDataKey"
"kms:ListAliases"
"kms:ListGrants"
"kms:RevokeGrant"
The caller (either IAM user or IAM role) to all DataPlane operations ( PutRecord , GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :
"kms:Decrypt"
EnableOnlineStore (boolean) --
Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn OnlineStore on by specifying True for the EnableOnlineStore flag.
The default value is False .
OfflineStoreConfig (dict) --
The configuration of the OfflineStore , inducing the S3 location of the OfflineStore , Amazon Web Services Glue or Amazon Web Services Hive data catalogue configurations, and the security configuration.
S3StorageConfig (dict) --
The Amazon Simple Storage (Amazon S3) location of OfflineStore .
S3Uri (string) --
The S3 URI, or location in Amazon S3, of OfflineStore .
S3 URIs have a format similar to the following: s3://example-bucket/prefix/ .
KmsKeyId (string) --
The Amazon Web Services Key Management Service (KMS) key ID of the key used to encrypt any objects written into the OfflineStore S3 location.
The IAM roleARN that is passed as a parameter to CreateFeatureGroup must have below permissions to the KmsKeyId :
"kms:GenerateDataKey"
ResolvedOutputS3Uri (string) --
The S3 path where offline records are written.
DisableGlueTableCreation (boolean) --
Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore .
DataCatalogConfig (dict) --
The meta data of the Glue table that is autogenerated when an OfflineStore is created.
TableName (string) --
The name of the Glue table.
Catalog (string) --
The name of the Glue table catalog.
Database (string) --
The name of the Glue table database.
TableFormat (string) --
Format for the offline store feature group. Iceberg is the optimal format for feature groups shared between offline and online stores.
RoleArn (string) --
The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.
FeatureGroupStatus (string) --
The status of the feature group.
OfflineStoreStatus (dict) --
The status of the OfflineStore . Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked
Status (string) --
An OfflineStore status.
BlockedReason (string) --
The justification for why the OfflineStoreStatus is Blocked (if applicable).
LastUpdateStatus (dict) --
A value indicating whether the update made to the feature group was successful.
Status (string) --
A value that indicates whether the update was made successful.
FailureReason (string) --
If the update wasn't successful, indicates the reason why it failed.
FailureReason (string) --
The reason that the FeatureGroup failed to be replicated in the OfflineStore . This is failure can occur because:
The FeatureGroup could not be created in the OfflineStore .
The FeatureGroup could not be deleted from the OfflineStore .
Description (string) --
A free form description of the feature group.
NextToken (string) --
A token to resume pagination of the list of Features ( FeatureDefinitions ).
OnlineStoreTotalSizeBytes (integer) --
The size of the OnlineStore in bytes.
{'ExperimentConfig': {'RunName': 'string'}}
Returns a description of a processing job.
See also: AWS API Documentation
Request Syntax
client.describe_processing_job( ProcessingJobName='string' )
string
[REQUIRED]
The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
dict
Response Syntax
{ 'ProcessingInputs': [ { 'InputName': 'string', 'AppManaged': True|False, 'S3Input': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3DataType': 'ManifestFile'|'S3Prefix', 'S3InputMode': 'Pipe'|'File', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'S3CompressionType': 'None'|'Gzip' }, 'DatasetDefinition': { 'AthenaDatasetDefinition': { 'Catalog': 'string', 'Database': 'string', 'QueryString': 'string', 'WorkGroup': 'string', 'OutputS3Uri': 'string', 'KmsKeyId': 'string', 'OutputFormat': 'PARQUET'|'ORC'|'AVRO'|'JSON'|'TEXTFILE', 'OutputCompression': 'GZIP'|'SNAPPY'|'ZLIB' }, 'RedshiftDatasetDefinition': { 'ClusterId': 'string', 'Database': 'string', 'DbUser': 'string', 'QueryString': 'string', 'ClusterRoleArn': 'string', 'OutputS3Uri': 'string', 'KmsKeyId': 'string', 'OutputFormat': 'PARQUET'|'CSV', 'OutputCompression': 'None'|'GZIP'|'BZIP2'|'ZSTD'|'SNAPPY' }, 'LocalPath': 'string', 'DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'InputMode': 'Pipe'|'File' } }, ], 'ProcessingOutputConfig': { 'Outputs': [ { 'OutputName': 'string', 'S3Output': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3UploadMode': 'Continuous'|'EndOfJob' }, 'FeatureStoreOutput': { 'FeatureGroupName': 'string' }, 'AppManaged': True|False }, ], 'KmsKeyId': 'string' }, 'ProcessingJobName': 'string', 'ProcessingResources': { 'ClusterConfig': { 'InstanceCount': 123, 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' } }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123 }, 'AppSpecification': { 'ImageUri': 'string', 'ContainerEntrypoint': [ 'string', ], 'ContainerArguments': [ 'string', ] }, 'Environment': { 'string': 'string' }, 'NetworkConfig': { 'EnableInterContainerTrafficEncryption': True|False, 'EnableNetworkIsolation': True|False, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] } }, 'RoleArn': 'string', 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' }, 'ProcessingJobArn': 'string', 'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'ExitMessage': 'string', 'FailureReason': 'string', 'ProcessingEndTime': datetime(2015, 1, 1), 'ProcessingStartTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'MonitoringScheduleArn': 'string', 'AutoMLJobArn': 'string', 'TrainingJobArn': 'string' }
Response Structure
(dict) --
ProcessingInputs (list) --
The inputs for a processing job.
(dict) --
The inputs for a processing job. The processing input must specify exactly one of either S3Input or DatasetDefinition types.
InputName (string) --
The name for the processing job input.
AppManaged (boolean) --
When True , input operations such as data download are managed natively by the processing job application. When False (default), input operations are managed by Amazon SageMaker.
S3Input (dict) --
Configuration for downloading input data from Amazon S3 into the processing container.
S3Uri (string) --
The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run a processing job.
LocalPath (string) --
The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False (default).
S3DataType (string) --
Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
S3InputMode (string) --
Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.
S3DataDistributionType (string) --
Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key, downloading one shard of data to each processing instance.
S3CompressionType (string) --
Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.
DatasetDefinition (dict) --
Configuration for a Dataset Definition input.
AthenaDatasetDefinition (dict) --
Configuration for Athena Dataset Definition input.
Catalog (string) --
The name of the data catalog used in Athena query execution.
Database (string) --
The name of the database used in the Athena query execution.
QueryString (string) --
The SQL query statements, to be executed.
WorkGroup (string) --
The name of the workgroup in which the Athena query is being started.
OutputS3Uri (string) --
The location in Amazon S3 where Athena query results are stored.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.
OutputFormat (string) --
The data storage format for Athena query results.
OutputCompression (string) --
The compression used for Athena query results.
RedshiftDatasetDefinition (dict) --
Configuration for Redshift Dataset Definition input.
ClusterId (string) --
The Redshift cluster Identifier.
Database (string) --
The name of the Redshift database used in Redshift query execution.
DbUser (string) --
The database user name used in Redshift query execution.
QueryString (string) --
The SQL query statements to be executed.
ClusterRoleArn (string) --
The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.
OutputS3Uri (string) --
The location in Amazon S3 where the Redshift query results are stored.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.
OutputFormat (string) --
The data storage format for Redshift query results.
OutputCompression (string) --
The compression used for Redshift query results.
LocalPath (string) --
The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job. LocalPath is an absolute path to the input data. This is a required parameter when AppManaged is False (default).
DataDistributionType (string) --
Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).
InputMode (string) --
Whether to use File or Pipe input mode. In File (default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
ProcessingOutputConfig (dict) --
Output configuration for the processing job.
Outputs (list) --
An array of outputs configuring the data to upload from the processing container.
(dict) --
Describes the results of a processing job. The processing output must specify exactly one of either S3Output or FeatureStoreOutput types.
OutputName (string) --
The name for the processing job output.
S3Output (dict) --
Configuration for processing job outputs in Amazon S3.
S3Uri (string) --
A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.
LocalPath (string) --
The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.
S3UploadMode (string) --
Whether to upload the results of the processing job continuously or after the job completes.
FeatureStoreOutput (dict) --
Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when AppManaged is specified.
FeatureGroupName (string) --
The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output. Note that your processing script is responsible for putting records into your Feature Store.
AppManaged (boolean) --
When True , output operations such as data upload are managed natively by the processing job application. When False (default), output operations are managed by Amazon SageMaker.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
ProcessingJobName (string) --
The name of the processing job. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
ProcessingResources (dict) --
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
ClusterConfig (dict) --
The configuration for the resources in a cluster used to run the processing job.
InstanceCount (integer) --
The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType (string) --
The ML compute instance type for the processing job.
VolumeSizeInGB (integer) --
The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
Note
Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for processing, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.
For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
StoppingCondition (dict) --
The time limit for how long the processing job is allowed to run.
MaxRuntimeInSeconds (integer) --
Specifies the maximum runtime in seconds.
AppSpecification (dict) --
Configures the processing job to run a specified container image.
ImageUri (string) --
The container image to be run by the processing job.
ContainerEntrypoint (list) --
The entrypoint for a container used to run a processing job.
(string) --
ContainerArguments (list) --
The arguments for a container used to run a processing job.
(string) --
Environment (dict) --
The environment variables set in the Docker container.
(string) --
(string) --
NetworkConfig (dict) --
Networking options for a processing job.
EnableInterContainerTrafficEncryption (boolean) --
Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.
EnableNetworkIsolation (boolean) --
Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
VpcConfig (dict) --
Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds (list) --
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) --
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
RoleArn (string) --
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
ExperimentConfig (dict) --
The configuration information used to create an experiment.
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate the trial component with.
ProcessingJobArn (string) --
The Amazon Resource Name (ARN) of the processing job.
ProcessingJobStatus (string) --
Provides the status of a processing job.
ExitMessage (string) --
An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
FailureReason (string) --
A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
ProcessingEndTime (datetime) --
The time at which the processing job completed.
ProcessingStartTime (datetime) --
The time at which the processing job started.
LastModifiedTime (datetime) --
The time at which the processing job was last modified.
CreationTime (datetime) --
The time at which the processing job was created.
MonitoringScheduleArn (string) --
The ARN of a monitoring schedule for an endpoint associated with this processing job.
AutoMLJobArn (string) --
The ARN of an AutoML job associated with this processing job.
TrainingJobArn (string) --
The ARN of a training job associated with this processing job.
{'ExperimentConfig': {'RunName': 'string'}}
Returns information about a training job.
Some of the attributes below only appear if the training job successfully starts. If the training job fails, TrainingJobStatus is Failed and, depending on the FailureReason , attributes like TrainingStartTime , TrainingTimeInSeconds , TrainingEndTime , and BillableTimeInSeconds may not be present in the response.
See also: AWS API Documentation
Request Syntax
client.describe_training_job( TrainingJobName='string' )
string
[REQUIRED]
The name of the training job.
dict
Response Syntax
{ 'TrainingJobName': 'string', 'TrainingJobArn': 'string', 'TuningJobArn': 'string', 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'ModelArtifacts': { 'S3ModelArtifacts': 'string' }, 'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'SecondaryStatus': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating'|'Restarting', 'FailureReason': 'string', 'HyperParameters': { 'string': 'string' }, 'AlgorithmSpecification': { 'TrainingImage': 'string', 'AlgorithmName': 'string', 'TrainingInputMode': 'Pipe'|'File'|'FastFile', 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'EnableSageMakerMetricsTimeSeries': True|False, 'ContainerEntrypoint': [ 'string', ], 'ContainerArguments': [ 'string', ] }, 'RoleArn': 'string', 'InputDataConfig': [ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ], 'InstanceGroupNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File'|'FastFile', 'ShuffleConfig': { 'Seed': 123 } }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, 'ResourceConfig': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string', 'InstanceGroups': [ { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge'|'ml.trn1.2xlarge'|'ml.trn1.32xlarge', 'InstanceCount': 123, 'InstanceGroupName': 'string' }, ], 'KeepAlivePeriodInSeconds': 123 }, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123 }, 'CreationTime': datetime(2015, 1, 1), 'TrainingStartTime': datetime(2015, 1, 1), 'TrainingEndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'SecondaryStatusTransitions': [ { 'Status': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating'|'Restarting', 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'StatusMessage': 'string' }, ], 'FinalMetricDataList': [ { 'MetricName': 'string', 'Value': ..., 'Timestamp': datetime(2015, 1, 1) }, ], 'EnableNetworkIsolation': True|False, 'EnableInterContainerTrafficEncryption': True|False, 'EnableManagedSpotTraining': True|False, 'CheckpointConfig': { 'S3Uri': 'string', 'LocalPath': 'string' }, 'TrainingTimeInSeconds': 123, 'BillableTimeInSeconds': 123, 'DebugHookConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string', 'HookParameters': { 'string': 'string' }, 'CollectionConfigurations': [ { 'CollectionName': 'string', 'CollectionParameters': { 'string': 'string' } }, ] }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' }, 'DebugRuleConfigurations': [ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], 'TensorBoardOutputConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string' }, 'DebugRuleEvaluationStatuses': [ { 'RuleConfigurationName': 'string', 'RuleEvaluationJobArn': 'string', 'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped', 'StatusDetails': 'string', 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'ProfilerConfig': { 'S3OutputPath': 'string', 'ProfilingIntervalInMilliseconds': 123, 'ProfilingParameters': { 'string': 'string' }, 'DisableProfiler': True|False }, 'ProfilerRuleConfigurations': [ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], 'ProfilerRuleEvaluationStatuses': [ { 'RuleConfigurationName': 'string', 'RuleEvaluationJobArn': 'string', 'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped', 'StatusDetails': 'string', 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'ProfilingStatus': 'Enabled'|'Disabled', 'RetryStrategy': { 'MaximumRetryAttempts': 123 }, 'Environment': { 'string': 'string' }, 'WarmPoolStatus': { 'Status': 'Available'|'Terminated'|'Reused'|'InUse', 'ResourceRetainedBillableTimeInSeconds': 123, 'ReusedByJob': 'string' } }
Response Structure
(dict) --
TrainingJobName (string) --
Name of the model training job.
TrainingJobArn (string) --
The Amazon Resource Name (ARN) of the training job.
TuningJobArn (string) --
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
LabelingJobArn (string) --
The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.
AutoMLJobArn (string) --
The Amazon Resource Name (ARN) of an AutoML job.
ModelArtifacts (dict) --
Information about the Amazon S3 location that is configured for storing model artifacts.
S3ModelArtifacts (string) --
The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz .
TrainingJobStatus (string) --
The status of the training job.
SageMaker provides the following training job statuses:
InProgress - The training is in progress.
Completed - The training job has completed.
Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.
Stopping - The training job is stopping.
Stopped - The training job has stopped.
For more detailed information, see SecondaryStatus .
SecondaryStatus (string) --
Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition.
SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress
Starting - Starting the training job.
Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training - Training is in progress.
Interrupted - The job stopped because the managed spot training instances were interrupted.
Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.
Completed
Completed - The training job has completed.
Failed
Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .
Stopped
MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.
MaxWaitTimeExceeded - The job stopped because it exceeded the maximum allowed wait time.
Stopped - The training job has stopped.
Stopping
Stopping - Stopping the training job.
Warning
Valid values for SecondaryStatus are subject to change.
We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTraining
DownloadingTrainingImage
FailureReason (string) --
If the training job failed, the reason it failed.
HyperParameters (dict) --
Algorithm-specific parameters.
(string) --
(string) --
AlgorithmSpecification (dict) --
Information about the algorithm used for training, and algorithm metadata.
TrainingImage (string) --
The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for SageMaker built-in algorithms, see Docker Registry Paths and Example Code in the Amazon SageMaker developer guide . SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information about using your custom training container, see Using Your Own Algorithms with Amazon SageMaker.
Note
You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.
For more information, see the note in the AlgorithmName parameter description.
AlgorithmName (string) --
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.
Note
You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the algorithm container to the TrainingImage parameter.
Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for TrainingImage , and vice versa.
If you specify values for both parameters, the training job might break; if you don't specify any value for both parameters, the training job might raise a null error.
TrainingInputMode (string) --
The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports Pipe mode, Amazon SageMaker streams data directly from Amazon S3 to the container.
File mode
If an algorithm supports File mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.
You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports FastFile mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.
FastFile mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided.
MetricDefinitions (list) --
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
(dict) --
Specifies a metric that the training algorithm writes to stderr or stdout . SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.
Name (string) --
The name of the metric.
Regex (string) --
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
EnableSageMakerMetricsTimeSeries (boolean) --
To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
ContainerEntrypoint (list) --
The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.
(string) --
ContainerArguments (list) --
The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.
(string) --
RoleArn (string) --
The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.
InputDataConfig (list) --
An array of Channel objects that describes each data input channel.
(dict) --
A channel is a named input source that training algorithms can consume.
ChannelName (string) --
The name of the channel.
DataSource (dict) --
The location of the channel data.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.
If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .
S3Uri (string) --
Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix
A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
S3DataDistributionType (string) --
If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .
If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.
AttributeNames (list) --
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string) --
InstanceGroupNames (list) --
A list of names of instance groups that get data from the S3 data source.
(string) --
FileSystemDataSource (dict) --
The file system that is associated with a channel.
FileSystemId (string) --
The file system id.
FileSystemAccessMode (string) --
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
FileSystemType (string) --
The file system type.
DirectoryPath (string) --
The full path to the directory to associate with the channel.
ContentType (string) --
The MIME type of the data.
CompressionType (string) --
If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
RecordWrapperType (string) --
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
InputMode (string) --
(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.
To use a model for incremental training, choose File input model.
ShuffleConfig (dict) --
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.
For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
Seed (integer) --
Determines the shuffling order in ShuffleConfig value.
OutputDataConfig (dict) --
The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
S3OutputPath (string) --
Identifies the S3 path where you want SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .
ResourceConfig (dict) --
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
InstanceType (string) --
The ML compute instance type.
InstanceCount (integer) --
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB (integer) --
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.
When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d , ml.g4dn , and ml.g5 .
When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2 .
To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId (string) --
The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId can be in any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
InstanceGroups (list) --
The configuration of a heterogeneous cluster in JSON format.
(dict) --
Defines an instance group for heterogeneous cluster training. When requesting a training job using the CreateTrainingJob API, you can configure multiple instance groups .
InstanceType (string) --
Specifies the instance type of the instance group.
InstanceCount (integer) --
Specifies the number of instances of the instance group.
InstanceGroupName (string) --
Specifies the name of the instance group.
KeepAlivePeriodInSeconds (integer) --
The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
VpcConfig (dict) --
A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds (list) --
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) --
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
StoppingCondition (dict) --
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
MaxRuntimeInSeconds (integer) --
The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a TimeOut error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.
For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.
The maximum time that a TrainingJob can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.
MaxWaitTimeInSeconds (integer) --
The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker ends the job.
When RetryStrategy is specified in the job request, MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in total, not each individual attempt.
CreationTime (datetime) --
A timestamp that indicates when the training job was created.
TrainingStartTime (datetime) --
Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime . The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
TrainingEndTime (datetime) --
Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.
LastModifiedTime (datetime) --
A timestamp that indicates when the status of the training job was last modified.
SecondaryStatusTransitions (list) --
A history of all of the secondary statuses that the training job has transitioned through.
(dict) --
An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.
Status (string) --
Contains a secondary status information from a training job.
Status might be one of the following secondary statuses:
InProgress
Starting - Starting the training job.
Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training - Training is in progress.
Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.
Completed
Completed - The training job has completed.
Failed
Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .
Stopped
MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.
Stopped - The training job has stopped.
Stopping
Stopping - Stopping the training job.
We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
StartTime (datetime) --
A timestamp that shows when the training job transitioned to the current secondary status state.
EndTime (datetime) --
A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
StatusMessage (string) --
A detailed description of the progress within a secondary status.
SageMaker provides secondary statuses and status messages that apply to each of them:
Starting
Starting the training job.
Launching requested ML instances.
Insufficient capacity error from EC2 while launching instances, retrying!
Launched instance was unhealthy, replacing it!
Preparing the instances for training.
Training
Downloading the training image.
Training image download completed. Training in progress.
Warning
Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.
To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:
TrainingJobStatus - InProgress
SecondaryStatus - Training
StatusMessage - Downloading the training image
FinalMetricDataList (list) --
A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
(dict) --
The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.
MetricName (string) --
The name of the metric.
Value (float) --
The value of the metric.
Timestamp (datetime) --
The date and time that the algorithm emitted the metric.
EnableNetworkIsolation (boolean) --
If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True . If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
EnableInterContainerTrafficEncryption (boolean) --
To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
EnableManagedSpotTraining (boolean) --
A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).
CheckpointConfig (dict) --
Contains information about the output location for managed spot training checkpoint data.
S3Uri (string) --
Identifies the S3 path where you want SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .
LocalPath (string) --
(Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .
TrainingTimeInSeconds (integer) --
The training time in seconds.
BillableTimeInSeconds (integer) --
The billable time in seconds. Billable time refers to the absolute wall-clock time.
Multiply BillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: BillableTimeInSeconds * InstanceCount .
You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100 . For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.
DebugHookConfig (dict) --
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
LocalPath (string) --
Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for metrics and tensors.
HookParameters (dict) --
Configuration information for the Amazon SageMaker Debugger hook parameters.
(string) --
(string) --
CollectionConfigurations (list) --
Configuration information for Amazon SageMaker Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(dict) --
Configuration information for the Amazon SageMaker Debugger output tensor collections.
CollectionName (string) --
The name of the tensor collection. The name must be unique relative to other rule configuration names.
CollectionParameters (dict) --
Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .
(string) --
(string) --
ExperimentConfig (dict) --
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate the trial component with.
DebugRuleConfigurations (list) --
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
(dict) --
Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
RuleConfigurationName (string) --
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) --
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a custom rule for debugging a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
TensorBoardOutputConfig (dict) --
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
LocalPath (string) --
Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .
S3OutputPath (string) --
Path to Amazon S3 storage location for TensorBoard output.
DebugRuleEvaluationStatuses (list) --
Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.
(dict) --
Information about the status of the rule evaluation.
RuleConfigurationName (string) --
The name of the rule configuration.
RuleEvaluationJobArn (string) --
The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationStatus (string) --
Status of the rule evaluation.
StatusDetails (string) --
Details from the rule evaluation.
LastModifiedTime (datetime) --
Timestamp when the rule evaluation status was last modified.
ProfilerConfig (dict) --
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
S3OutputPath (string) --
Path to Amazon S3 storage location for system and framework metrics.
ProfilingIntervalInMilliseconds (integer) --
A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.
ProfilingParameters (dict) --
Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(string) --
(string) --
DisableProfiler (boolean) --
Configuration to turn off Amazon SageMaker Debugger's system monitoring and profiling functionality. To turn it off, set to True .
ProfilerRuleConfigurations (list) --
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
(dict) --
Configuration information for profiling rules.
RuleConfigurationName (string) --
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) --
The Amazon Elastic Container Registry Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a custom rule for profiling a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
ProfilerRuleEvaluationStatuses (list) --
Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.
(dict) --
Information about the status of the rule evaluation.
RuleConfigurationName (string) --
The name of the rule configuration.
RuleEvaluationJobArn (string) --
The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationStatus (string) --
Status of the rule evaluation.
StatusDetails (string) --
Details from the rule evaluation.
LastModifiedTime (datetime) --
Timestamp when the rule evaluation status was last modified.
ProfilingStatus (string) --
Profiling status of a training job.
RetryStrategy (dict) --
The number of times to retry the job when the job fails due to an InternalServerError .
MaximumRetryAttempts (integer) --
The number of times to retry the job. When the job is retried, it's SecondaryStatus is changed to STARTING .
Environment (dict) --
The environment variables to set in the Docker container.
(string) --
(string) --
WarmPoolStatus (dict) --
The status of the warm pool associated with the training job.
Status (string) --
The status of the warm pool.
InUse : The warm pool is in use for the training job.
Available : The warm pool is available to reuse for a matching training job.
Reused : The warm pool moved to a matching training job for reuse.
Terminated : The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified KeepAlivePeriodInSeconds .
ResourceRetainedBillableTimeInSeconds (integer) --
The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.
Multiply ResourceRetainedBillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .
ReusedByJob (string) --
The name of the matching training job that reused the warm pool.
{'ExperimentConfig': {'RunName': 'string'}}
Returns information about a transform job.
See also: AWS API Documentation
Request Syntax
client.describe_transform_job( TransformJobName='string' )
string
[REQUIRED]
The name of the transform job that you want to view details of.
dict
Response Syntax
{ 'TransformJobName': 'string', 'TransformJobArn': 'string', 'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'FailureReason': 'string', 'ModelName': 'string', 'MaxConcurrentTransforms': 123, 'ModelClientConfig': { 'InvocationsTimeoutInSeconds': 123, 'InvocationsMaxRetries': 123 }, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'DataCaptureConfig': { 'DestinationS3Uri': 'string', 'KmsKeyId': 'string', 'GenerateInferenceId': True|False }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'TransformStartTime': datetime(2015, 1, 1), 'TransformEndTime': datetime(2015, 1, 1), 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'DataProcessing': { 'InputFilter': 'string', 'OutputFilter': 'string', 'JoinSource': 'Input'|'None' }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string', 'RunName': 'string' } }
Response Structure
(dict) --
TransformJobName (string) --
The name of the transform job.
TransformJobArn (string) --
The Amazon Resource Name (ARN) of the transform job.
TransformJobStatus (string) --
The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.
FailureReason (string) --
If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.
ModelName (string) --
The name of the model used in the transform job.
MaxConcurrentTransforms (integer) --
The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
ModelClientConfig (dict) --
The timeout and maximum number of retries for processing a transform job invocation.
InvocationsTimeoutInSeconds (integer) --
The timeout value in seconds for an invocation request. The default value is 600.
InvocationsMaxRetries (integer) --
The maximum number of retries when invocation requests are failing. The default value is 3.
MaxPayloadInMB (integer) --
The maximum payload size, in MB, used in the transform job.
BatchStrategy (string) --
Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
To enable the batch strategy, you must set SplitType to Line , RecordIO , or TFRecord .
Environment (dict) --
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
(string) --
(string) --
TransformInput (dict) --
Describes the dataset to be transformed and the Amazon S3 location where it is stored.
DataSource (dict) --
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.
If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.
The following values are compatible: ManifestFile , S3Prefix
The following value is not compatible: AugmentedManifestFile
S3Uri (string) --
Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix .
A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
ContentType (string) --
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType (string) --
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .
SplitType (string) --
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.
Note
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .
For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.
TransformOutput (dict) --
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath (string) --
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .
For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
Accept (string) --
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith (string) --
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .
KmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide .
DataCaptureConfig (dict) --
Configuration to control how SageMaker captures inference data.
DestinationS3Uri (string) --
The Amazon S3 location being used to capture the data.
KmsKeyId (string) --
The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the batch transform job.
The KmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
GenerateInferenceId (boolean) --
Flag that indicates whether to append inference id to the output.
TransformResources (dict) --
Describes the resources, including ML instance types and ML instance count, to use for the transform job.
InstanceType (string) --
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.
InstanceCount (integer) --
The number of ML compute instances to use in the transform job. The default value is 1 , and the maximum is 100 . For distributed transform jobs, specify a value greater than 1 .
VolumeKmsKeyId (string) --
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId can be any of the following formats:
Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name: alias/ExampleAlias
Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
CreationTime (datetime) --
A timestamp that shows when the transform Job was created.
TransformStartTime (datetime) --
Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime .
TransformEndTime (datetime) --
Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime .
LabelingJobArn (string) --
The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
AutoMLJobArn (string) --
The Amazon Resource Name (ARN) of the AutoML transform job.
DataProcessing (dict) --
The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
InputFilter (string) --
A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $ .
Examples: "$" , "$[1:]" , "$.features"
OutputFilter (string) --
A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $ . If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.
Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"
JoinSource (string) --
Specifies the source of the data to join with the transformed data. The valid values are None and Input . The default value is None , which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input . You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.
For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput . The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput .
For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.
For information on how joining in applied, see Workflow for Associating Inferences with Input Records.
ExperimentConfig (dict) --
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
RunName (string) --
The name of the experiment run to associate the trial component with.
{'Sources': [{'SourceArn': 'string', 'SourceType': 'string'}]}
Provides a list of a trials component's properties.
See also: AWS API Documentation
Request Syntax
client.describe_trial_component( TrialComponentName='string' )
string
[REQUIRED]
The name of the trial component to describe.
dict
Response Syntax
{ 'TrialComponentName': 'string', 'TrialComponentArn': 'string', 'DisplayName': 'string', 'Source': { 'SourceArn': 'string', 'SourceType': 'string' }, 'Status': { 'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'Message': 'string' }, 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'Parameters': { 'string': { 'StringValue': 'string', 'NumberValue': 123.0 } }, 'InputArtifacts': { 'string': { 'MediaType': 'string', 'Value': 'string' } }, 'OutputArtifacts': { 'string': { 'MediaType': 'string', 'Value': 'string' } }, 'MetadataProperties': { 'CommitId': 'string', 'Repository': 'string', 'GeneratedBy': 'string', 'ProjectId': 'string' }, 'Metrics': [ { 'MetricName': 'string', 'SourceArn': 'string', 'TimeStamp': datetime(2015, 1, 1), 'Max': 123.0, 'Min': 123.0, 'Last': 123.0, 'Count': 123, 'Avg': 123.0, 'StdDev': 123.0 }, ], 'LineageGroupArn': 'string', 'Sources': [ { 'SourceArn': 'string', 'SourceType': 'string' }, ] }
Response Structure
(dict) --
TrialComponentName (string) --
The name of the trial component.
TrialComponentArn (string) --
The Amazon Resource Name (ARN) of the trial component.
DisplayName (string) --
The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
Source (dict) --
The Amazon Resource Name (ARN) of the source and, optionally, the job type.
SourceArn (string) --
The source Amazon Resource Name (ARN).
SourceType (string) --
The source job type.
Status (dict) --
The status of the component. States include:
InProgress
Completed
Failed
PrimaryStatus (string) --
The status of the trial component.
Message (string) --
If the component failed, a message describing why.
StartTime (datetime) --
When the component started.
EndTime (datetime) --
When the component ended.
CreationTime (datetime) --
When the component was created.
CreatedBy (dict) --
Who created the trial component.
UserProfileArn (string) --
The Amazon Resource Name (ARN) of the user's profile.
UserProfileName (string) --
The name of the user's profile.
DomainId (string) --
The domain associated with the user.
LastModifiedTime (datetime) --
When the component was last modified.
LastModifiedBy (dict) --
Who last modified the component.
UserProfileArn (string) --
The Amazon Resource Name (ARN) of the user's profile.
UserProfileName (string) --
The name of the user's profile.
DomainId (string) --
The domain associated with the user.
Parameters (dict) --
The hyperparameters of the component.
(string) --
(dict) --
The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.
This object is specified in the CreateTrialComponent request.
StringValue (string) --
The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.
NumberValue (float) --
The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.
InputArtifacts (dict) --
The input artifacts of the component.
(string) --
(dict) --
Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.
Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.
MediaType (string) --
The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.
Value (string) --
The location of the artifact.
OutputArtifacts (dict) --
The output artifacts of the component.
(string) --
(dict) --
Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.
Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.
MediaType (string) --
The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.
Value (string) --
The location of the artifact.
MetadataProperties (dict) --
Metadata properties of the tracking entity, trial, or trial component.
CommitId (string) --
The commit ID.
Repository (string) --
The repository.
GeneratedBy (string) --
The entity this entity was generated by.
ProjectId (string) --
The project ID.
Metrics (list) --
The metrics for the component.
(dict) --
A summary of the metrics of a trial component.
MetricName (string) --
The name of the metric.
SourceArn (string) --
The Amazon Resource Name (ARN) of the source.
TimeStamp (datetime) --
When the metric was last updated.
Max (float) --
The maximum value of the metric.
Min (float) --
The minimum value of the metric.
Last (float) --
The most recent value of the metric.
Count (integer) --
The number of samples used to generate the metric.
Avg (float) --
The average value of the metric.
StdDev (float) --
The standard deviation of the metric.
LineageGroupArn (string) --
The Amazon Resource Name (ARN) of the lineage group.
Sources (list) --
A list of the Amazon Resource Name (ARN) and, if applicable, job type for multiple sources of an experiment run.
(dict) --
The Amazon Resource Name (ARN) and job type of the source of a trial component.
SourceArn (string) --
The source Amazon Resource Name (ARN).
SourceType (string) --
The source job type.
{'UserSettings': {'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}]}}}
Describes a user profile. For more information, see CreateUserProfile .
See also: AWS API Documentation
Request Syntax
client.describe_user_profile( DomainId='string', UserProfileName='string' )
string
[REQUIRED]
The domain ID.
string
[REQUIRED]
The user profile name. This value is not case sensitive.
dict
Response Syntax
{ 'DomainId': 'string', 'UserProfileArn': 'string', 'UserProfileName': 'string', 'HomeEfsFileSystemUid': 'string', 'Status': 'Deleting'|'Failed'|'InService'|'Pending'|'Updating'|'Update_Failed'|'Delete_Failed', 'LastModifiedTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'FailureReason': 'string', 'SingleSignOnUserIdentifier': 'string', 'SingleSignOnUserValue': 'string', 'UserSettings': { 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'SharingSettings': { 'NotebookOutputOption': 'Allowed'|'Disabled', 'S3OutputPath': 'string', 'S3KmsKeyId': 'string' }, 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] }, 'TensorBoardAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'RStudioServerProAppSettings': { 'AccessStatus': 'ENABLED'|'DISABLED', 'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER' }, 'RSessionAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ] }, 'CanvasAppSettings': { 'TimeSeriesForecastingSettings': { 'Status': 'ENABLED'|'DISABLED', 'AmazonForecastRoleArn': 'string' } } } }
Response Structure
(dict) --
DomainId (string) --
The ID of the domain that contains the profile.
UserProfileArn (string) --
The user profile Amazon Resource Name (ARN).
UserProfileName (string) --
The user profile name.
HomeEfsFileSystemUid (string) --
The ID of the user's profile in the Amazon Elastic File System (EFS) volume.
Status (string) --
The status.
LastModifiedTime (datetime) --
The last modified time.
CreationTime (datetime) --
The creation time.
FailureReason (string) --
The failure reason.
SingleSignOnUserIdentifier (string) --
The IAM Identity Center user identifier.
SingleSignOnUserValue (string) --
The IAM Identity Center user value.
UserSettings (dict) --
A collection of settings.
ExecutionRole (string) --
The execution role for the user.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .
Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .
Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
(string) --
SharingSettings (dict) --
Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption (string) --
Whether to include the notebook cell output when sharing the notebook. The default is Disabled .
S3OutputPath (string) --
When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.
S3KmsKeyId (string) --
When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings (dict) --
The Jupyter server's app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) --
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The kernel gateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) --
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) --
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
TensorBoardAppSettings (dict) --
The TensorBoard app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings (dict) --
A collection of settings that configure user interaction with the RStudioServerPro app.
AccessStatus (string) --
Indicates whether the current user has access to the RStudioServerPro app.
UserGroup (string) --
The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.
RSessionAppSettings (dict) --
A collection of settings that configure the RSessionGateway app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a RSession app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) --
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) --
The name of the AppImageConfig.
CanvasAppSettings (dict) --
The Canvas app settings.
TimeSeriesForecastingSettings (dict) --
Time series forecast settings for the Canvas app.
Status (string) --
Describes whether time series forecasting is enabled or disabled in the Canvas app.
AmazonForecastRoleArn (string) --
The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
{'Resource': {'Model', 'ModelCard'}}
An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters , Tags , and Metrics .
See also: AWS API Documentation
Request Syntax
client.get_search_suggestions( Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup'|'Project'|'FeatureMetadata'|'HyperParameterTuningJob'|'ModelCard'|'Model', SuggestionQuery={ 'PropertyNameQuery': { 'PropertyNameHint': 'string' } } )
string
[REQUIRED]
The name of the Amazon SageMaker resource to search for.
dict
Limits the property names that are included in the response.
PropertyNameQuery (dict) --
Defines a property name hint. Only property names that begin with the specified hint are included in the response.
PropertyNameHint (string) -- [REQUIRED]
Text that begins a property's name.
dict
Response Syntax
{ 'PropertyNameSuggestions': [ { 'PropertyName': 'string' }, ] }
Response Structure
(dict) --
PropertyNameSuggestions (list) --
A list of property names for a Resource that match a SuggestionQuery .
(dict) --
A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.
PropertyName (string) --
A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.
{'SpaceNameEquals': 'string'}Response
{'Apps': {'SpaceName': 'string'}}
Lists apps.
See also: AWS API Documentation
Request Syntax
client.list_apps( NextToken='string', MaxResults=123, SortOrder='Ascending'|'Descending', SortBy='CreationTime', DomainIdEquals='string', UserProfileNameEquals='string', SpaceNameEquals='string' )
string
If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
integer
Returns a list up to a specified limit.
string
The sort order for the results. The default is Ascending.
string
The parameter by which to sort the results. The default is CreationTime.
string
A parameter to search for the domain ID.
string
A parameter to search by user profile name.
string
A parameter to search by space name.
dict
Response Syntax
{ 'Apps': [ { 'DomainId': 'string', 'UserProfileName': 'string', 'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard'|'RStudioServerPro'|'RSessionGateway', 'AppName': 'string', 'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending', 'CreationTime': datetime(2015, 1, 1), 'SpaceName': 'string' }, ], 'NextToken': 'string' }
Response Structure
(dict) --
Apps (list) --
The list of apps.
(dict) --
Details about an Amazon SageMaker app.
DomainId (string) --
The domain ID.
UserProfileName (string) --
The user profile name.
AppType (string) --
The type of app.
AppName (string) --
The name of the app.
Status (string) --
The status.
CreationTime (datetime) --
The creation time.
SpaceName (string) --
The name of the space.
NextToken (string) --
If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
{'PipelineExecutionSteps': {'Metadata': {'AutoMLJob': {'Arn': 'string'}}}}
Gets a list of PipeLineExecutionStep objects.
See also: AWS API Documentation
Request Syntax
client.list_pipeline_execution_steps( PipelineExecutionArn='string', NextToken='string', MaxResults=123, SortOrder='Ascending'|'Descending' )
string
The Amazon Resource Name (ARN) of the pipeline execution.
string
If the result of the previous ListPipelineExecutionSteps request was truncated, the response includes a NextToken . To retrieve the next set of pipeline execution steps, use the token in the next request.
integer
The maximum number of pipeline execution steps to return in the response.
string
The field by which to sort results. The default is CreatedTime .
dict
Response Syntax
{ 'PipelineExecutionSteps': [ { 'StepName': 'string', 'StepDisplayName': 'string', 'StepDescription': 'string', 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'StepStatus': 'Starting'|'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded', 'CacheHitResult': { 'SourcePipelineExecutionArn': 'string' }, 'AttemptCount': 123, 'FailureReason': 'string', 'Metadata': { 'TrainingJob': { 'Arn': 'string' }, 'ProcessingJob': { 'Arn': 'string' }, 'TransformJob': { 'Arn': 'string' }, 'TuningJob': { 'Arn': 'string' }, 'Model': { 'Arn': 'string' }, 'RegisterModel': { 'Arn': 'string' }, 'Condition': { 'Outcome': 'True'|'False' }, 'Callback': { 'CallbackToken': 'string', 'SqsQueueUrl': 'string', 'OutputParameters': [ { 'Name': 'string', 'Value': 'string' }, ] }, 'Lambda': { 'Arn': 'string', 'OutputParameters': [ { 'Name': 'string', 'Value': 'string' }, ] }, 'QualityCheck': { 'CheckType': 'string', 'BaselineUsedForDriftCheckStatistics': 'string', 'BaselineUsedForDriftCheckConstraints': 'string', 'CalculatedBaselineStatistics': 'string', 'CalculatedBaselineConstraints': 'string', 'ModelPackageGroupName': 'string', 'ViolationReport': 'string', 'CheckJobArn': 'string', 'SkipCheck': True|False, 'RegisterNewBaseline': True|False }, 'ClarifyCheck': { 'CheckType': 'string', 'BaselineUsedForDriftCheckConstraints': 'string', 'CalculatedBaselineConstraints': 'string', 'ModelPackageGroupName': 'string', 'ViolationReport': 'string', 'CheckJobArn': 'string', 'SkipCheck': True|False, 'RegisterNewBaseline': True|False }, 'EMR': { 'ClusterId': 'string', 'StepId': 'string', 'StepName': 'string', 'LogFilePath': 'string' }, 'Fail': { 'ErrorMessage': 'string' }, 'AutoMLJob': { 'Arn': 'string' } } }, ], 'NextToken': 'string' }
Response Structure
(dict) --
PipelineExecutionSteps (list) --
A list of PipeLineExecutionStep objects. Each PipeLineExecutionStep consists of StepName, StartTime, EndTime, StepStatus, and Metadata. Metadata is an object with properties for each job that contains relevant information about the job created by the step.
(dict) --
An execution of a step in a pipeline.
StepName (string) --
The name of the step that is executed.
StepDisplayName (string) --
The display name of the step.
StepDescription (string) --
The description of the step.
StartTime (datetime) --
The time that the step started executing.
EndTime (datetime) --
The time that the step stopped executing.
StepStatus (string) --
The status of the step execution.
CacheHitResult (dict) --
If this pipeline execution step was cached, details on the cache hit.
SourcePipelineExecutionArn (string) --
The Amazon Resource Name (ARN) of the pipeline execution.
AttemptCount (integer) --
The current attempt of the execution step. For more information, see Retry Policy for SageMaker Pipelines steps.
FailureReason (string) --
The reason why the step failed execution. This is only returned if the step failed its execution.
Metadata (dict) --
Metadata to run the pipeline step.
TrainingJob (dict) --
The Amazon Resource Name (ARN) of the training job that was run by this step execution.
Arn (string) --
The Amazon Resource Name (ARN) of the training job that was run by this step execution.
ProcessingJob (dict) --
The Amazon Resource Name (ARN) of the processing job that was run by this step execution.
Arn (string) --
The Amazon Resource Name (ARN) of the processing job.
TransformJob (dict) --
The Amazon Resource Name (ARN) of the transform job that was run by this step execution.
Arn (string) --
The Amazon Resource Name (ARN) of the transform job that was run by this step execution.
TuningJob (dict) --
The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.
Arn (string) --
The Amazon Resource Name (ARN) of the tuning job that was run by this step execution.
Model (dict) --
The Amazon Resource Name (ARN) of the model that was created by this step execution.
Arn (string) --
The Amazon Resource Name (ARN) of the created model.
RegisterModel (dict) --
The Amazon Resource Name (ARN) of the model package that the model was registered to by this step execution.
Arn (string) --
The Amazon Resource Name (ARN) of the model package.
Condition (dict) --
The outcome of the condition evaluation that was run by this step execution.
Outcome (string) --
The outcome of the Condition step evaluation.
Callback (dict) --
The URL of the Amazon SQS queue used by this step execution, the pipeline generated token, and a list of output parameters.
CallbackToken (string) --
The pipeline generated token from the Amazon SQS queue.
SqsQueueUrl (string) --
The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the callback step.
OutputParameters (list) --
A list of the output parameters of the callback step.
(dict) --
An output parameter of a pipeline step.
Name (string) --
The name of the output parameter.
Value (string) --
The value of the output parameter.
Lambda (dict) --
The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution and a list of output parameters.
Arn (string) --
The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution.
OutputParameters (list) --
A list of the output parameters of the Lambda step.
(dict) --
An output parameter of a pipeline step.
Name (string) --
The name of the output parameter.
Value (string) --
The value of the output parameter.
QualityCheck (dict) --
The configurations and outcomes of the check step execution. This includes:
The type of the check conducted.
The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.
The Amazon S3 URIs of newly calculated baseline constraints and statistics.
The model package group name provided.
The Amazon S3 URI of the violation report if violations detected.
The Amazon Resource Name (ARN) of check processing job initiated by the step execution.
The Boolean flags indicating if the drift check is skipped.
If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline .
CheckType (string) --
The type of the Quality check step.
BaselineUsedForDriftCheckStatistics (string) --
The Amazon S3 URI of the baseline statistics file used for the drift check.
BaselineUsedForDriftCheckConstraints (string) --
The Amazon S3 URI of the baseline constraints file used for the drift check.
CalculatedBaselineStatistics (string) --
The Amazon S3 URI of the newly calculated baseline statistics file.
CalculatedBaselineConstraints (string) --
The Amazon S3 URI of the newly calculated baseline constraints file.
ModelPackageGroupName (string) --
The model package group name.
ViolationReport (string) --
The Amazon S3 URI of violation report if violations are detected.
CheckJobArn (string) --
The Amazon Resource Name (ARN) of the Quality check processing job that was run by this step execution.
SkipCheck (boolean) --
This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False , the previous baseline of the configured check type must be available.
RegisterNewBaseline (boolean) --
This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics . If it is set to False , the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics properties.
ClarifyCheck (dict) --
Container for the metadata for a Clarify check step. The configurations and outcomes of the check step execution. This includes:
The type of the check conducted,
The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check.
The Amazon S3 URIs of newly calculated baseline constraints and statistics.
The model package group name provided.
The Amazon S3 URI of the violation report if violations detected.
The Amazon Resource Name (ARN) of check processing job initiated by the step execution.
The boolean flags indicating if the drift check is skipped.
If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline .
CheckType (string) --
The type of the Clarify Check step
BaselineUsedForDriftCheckConstraints (string) --
The Amazon S3 URI of baseline constraints file to be used for the drift check.
CalculatedBaselineConstraints (string) --
The Amazon S3 URI of the newly calculated baseline constraints file.
ModelPackageGroupName (string) --
The model package group name.
ViolationReport (string) --
The Amazon S3 URI of the violation report if violations are detected.
CheckJobArn (string) --
The Amazon Resource Name (ARN) of the check processing job that was run by this step's execution.
SkipCheck (boolean) --
This flag indicates if the drift check against the previous baseline will be skipped or not. If it is set to False , the previous baseline of the configured check type must be available.
RegisterNewBaseline (boolean) --
This flag indicates if a newly calculated baseline can be accessed through step properties BaselineUsedForDriftCheckConstraints and BaselineUsedForDriftCheckStatistics . If it is set to False , the previous baseline of the configured check type must also be available. These can be accessed through the BaselineUsedForDriftCheckConstraints property.
EMR (dict) --
The configurations and outcomes of an Amazon EMR step execution.
ClusterId (string) --
The identifier of the EMR cluster.
StepId (string) --
The identifier of the EMR cluster step.
StepName (string) --
The name of the EMR cluster step.
LogFilePath (string) --
The path to the log file where the cluster step's failure root cause is recorded.
Fail (dict) --
The configurations and outcomes of a Fail step execution.
ErrorMessage (string) --
A message that you define and then is processed and rendered by the Fail step when the error occurs.
AutoMLJob (dict) --
The Amazon Resource Name (ARN) of the AutoML job that was run by this step.
Arn (string) --
The Amazon Resource Name (ARN) of the AutoML job.
NextToken (string) --
If the result of the previous ListPipelineExecutionSteps request was truncated, the response includes a NextToken . To retrieve the next set of pipeline execution steps, use the token in the next request.
{'Resource': {'Model', 'ModelCard'}}Response
{'Results': {'Endpoint': {'ShadowProductionVariants': [{'CurrentInstanceCount': 'integer', 'CurrentServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'CurrentWeight': 'float', 'DeployedImages': [{'ResolutionTime': 'timestamp', 'ResolvedImage': 'string', 'SpecifiedImage': 'string'}], 'DesiredInstanceCount': 'integer', 'DesiredServerlessConfig': {'MaxConcurrency': 'integer', 'MemorySizeInMB': 'integer'}, 'DesiredWeight': 'float', 'VariantName': 'string', 'VariantStatus': [{'StartTime': 'timestamp', 'Status': 'Creating ' '| ' 'Updating ' '| ' 'Deleting ' '| ' 'ActivatingTraffic ' '| ' 'Baking', 'StatusMessage': 'string'}]}]}, 'FeatureGroup': {'OfflineStoreConfig': {'TableFormat': 'Glue | ' 'Iceberg'}}, 'Model': {'Endpoints': [{'CreationTime': 'timestamp', 'EndpointArn': 'string', 'EndpointName': 'string', 'EndpointStatus': 'OutOfService | ' 'Creating | Updating | ' 'SystemUpdating | ' 'RollingBack | ' 'InService | Deleting ' '| Failed', 'LastModifiedTime': 'timestamp'}], 'LastBatchTransformJob': {'AutoMLJobArn': 'string', 'BatchStrategy': 'MultiRecord ' '| ' 'SingleRecord', 'CreationTime': 'timestamp', 'DataProcessing': {'InputFilter': 'string', 'JoinSource': 'Input ' '| ' 'None', 'OutputFilter': 'string'}, 'Environment': {'string': 'string'}, 'ExperimentConfig': {'ExperimentName': 'string', 'RunName': 'string', 'TrialComponentDisplayName': 'string', 'TrialName': 'string'}, 'FailureReason': 'string', 'LabelingJobArn': 'string', 'MaxConcurrentTransforms': 'integer', 'MaxPayloadInMB': 'integer', 'ModelClientConfig': {'InvocationsMaxRetries': 'integer', 'InvocationsTimeoutInSeconds': 'integer'}, 'ModelName': 'string', 'Tags': [{'Key': 'string', 'Value': 'string'}], 'TransformEndTime': 'timestamp', 'TransformInput': {'CompressionType': 'None ' '| ' 'Gzip', 'ContentType': 'string', 'DataSource': {'S3DataSource': {'S3DataType': 'ManifestFile ' '| ' 'S3Prefix ' '| ' 'AugmentedManifestFile', 'S3Uri': 'string'}}, 'SplitType': 'None ' '| ' 'Line ' '| ' 'RecordIO ' '| ' 'TFRecord'}, 'TransformJobArn': 'string', 'TransformJobName': 'string', 'TransformJobStatus': 'InProgress ' '| ' 'Completed ' '| ' 'Failed ' '| ' 'Stopping ' '| ' 'Stopped', 'TransformOutput': {'Accept': 'string', 'AssembleWith': 'None ' '| ' 'Line', 'KmsKeyId': 'string', 'S3OutputPath': 'string'}, 'TransformResources': {'InstanceCount': 'integer', 'InstanceType': 'ml.m4.xlarge ' '| ' 'ml.m4.2xlarge ' '| ' 'ml.m4.4xlarge ' '| ' 'ml.m4.10xlarge ' '| ' 'ml.m4.16xlarge ' '| ' 'ml.c4.xlarge ' '| ' 'ml.c4.2xlarge ' '| ' 'ml.c4.4xlarge ' '| ' 'ml.c4.8xlarge ' '| ' 'ml.p2.xlarge ' '| ' 'ml.p2.8xlarge ' '| ' 'ml.p2.16xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge', 'VolumeKmsKeyId': 'string'}, 'TransformStartTime': 'timestamp'}, 'Model': {'Containers': [{'ContainerHostname': 'string', 'Environment': {'string': 'string'}, 'Image': 'string', 'ImageConfig': {'RepositoryAccessMode': 'Platform ' '| ' 'Vpc', 'RepositoryAuthConfig': {'RepositoryCredentialsProviderArn': 'string'}}, 'InferenceSpecificationName': 'string', 'Mode': 'SingleModel | ' 'MultiModel', 'ModelDataUrl': 'string', 'ModelPackageName': 'string', 'MultiModelConfig': {'ModelCacheSetting': 'Enabled ' '| ' 'Disabled'}}], 'CreationTime': 'timestamp', 'EnableNetworkIsolation': 'boolean', 'ExecutionRoleArn': 'string', 'InferenceExecutionConfig': {'Mode': 'Serial ' '| ' 'Direct'}, 'ModelArn': 'string', 'ModelName': 'string', 'PrimaryContainer': {'ContainerHostname': 'string', 'Environment': {'string': 'string'}, 'Image': 'string', 'ImageConfig': {'RepositoryAccessMode': 'Platform ' '| ' 'Vpc', 'RepositoryAuthConfig': {'RepositoryCredentialsProviderArn': 'string'}}, 'InferenceSpecificationName': 'string', 'Mode': 'SingleModel | ' 'MultiModel', 'ModelDataUrl': 'string', 'ModelPackageName': 'string', 'MultiModelConfig': {'ModelCacheSetting': 'Enabled ' '| ' 'Disabled'}}, 'Tags': [{'Key': 'string', 'Value': 'string'}], 'VpcConfig': {'SecurityGroupIds': ['string'], 'Subnets': ['string']}}, 'ModelCard': {'CreatedBy': {'DomainId': 'string', 'UserProfileArn': 'string', 'UserProfileName': 'string'}, 'CreationTime': 'timestamp', 'LastModifiedBy': {'DomainId': 'string', 'UserProfileArn': 'string', 'UserProfileName': 'string'}, 'LastModifiedTime': 'timestamp', 'ModelCardArn': 'string', 'ModelCardName': 'string', 'ModelCardStatus': 'Draft | PendingReview ' '| Approved | Archived', 'ModelCardVersion': 'integer', 'ModelId': 'string', 'RiskRating': 'string', 'SecurityConfig': {'KmsKeyId': 'string'}, 'Tags': [{'Key': 'string', 'Value': 'string'}]}, 'MonitoringSchedules': [{'CreationTime': 'timestamp', 'EndpointName': 'string', 'FailureReason': 'string', 'LastModifiedTime': 'timestamp', 'LastMonitoringExecutionSummary': {'CreationTime': 'timestamp', 'EndpointName': 'string', 'FailureReason': 'string', 'LastModifiedTime': 'timestamp', 'MonitoringExecutionStatus': 'Pending ' '| ' 'Completed ' '| ' 'CompletedWithViolations ' '| ' 'InProgress ' '| ' 'Failed ' '| ' 'Stopping ' '| ' 'Stopped', 'MonitoringJobDefinitionName': 'string', 'MonitoringScheduleName': 'string', 'MonitoringType': 'DataQuality ' '| ' 'ModelQuality ' '| ' 'ModelBias ' '| ' 'ModelExplainability', 'ProcessingJobArn': 'string', 'ScheduledTime': 'timestamp'}, 'MonitoringAlertSummaries': [{'Actions': {'ModelDashboardIndicator': {'Enabled': 'boolean'}}, 'AlertStatus': 'InAlert ' '| ' 'OK', 'CreationTime': 'timestamp', 'DatapointsToAlert': 'integer', 'EvaluationPeriod': 'integer', 'LastModifiedTime': 'timestamp', 'MonitoringAlertName': 'string'}], 'MonitoringScheduleArn': 'string', 'MonitoringScheduleConfig': {'MonitoringJobDefinition': {'BaselineConfig': {'BaseliningJobName': 'string', 'ConstraintsResource': {'S3Uri': 'string'}, 'StatisticsResource': {'S3Uri': 'string'}}, 'Environment': {'string': 'string'}, 'MonitoringAppSpecification': {'ContainerArguments': ['string'], 'ContainerEntrypoint': ['string'], 'ImageUri': 'string', 'PostAnalyticsProcessorSourceUri': 'string', 'RecordPreprocessorSourceUri': 'string'}, 'MonitoringInputs': [{'BatchTransformInput': {'DataCapturedDestinationS3Uri': 'string', 'DatasetFormat': {'Csv': {'Header': 'boolean'}, 'Json': {'Line': 'boolean'}, 'Parquet': {}}, 'EndTimeOffset': 'string', 'FeaturesAttribute': 'string', 'InferenceAttribute': 'string', 'LocalPath': 'string', 'ProbabilityAttribute': 'string', 'ProbabilityThresholdAttribute': 'double', 'S3DataDistributionType': 'FullyReplicated ' '| ' 'ShardedByS3Key', 'S3InputMode': 'Pipe ' '| ' 'File', 'StartTimeOffset': 'string'}, 'EndpointInput': {'EndTimeOffset': 'string', 'EndpointName': 'string', 'FeaturesAttribute': 'string', 'InferenceAttribute': 'string', 'LocalPath': 'string', 'ProbabilityAttribute': 'string', 'ProbabilityThresholdAttribute': 'double', 'S3DataDistributionType': 'FullyReplicated ' '| ' 'ShardedByS3Key', 'S3InputMode': 'Pipe ' '| ' 'File', 'StartTimeOffset': 'string'}}], 'MonitoringOutputConfig': {'KmsKeyId': 'string', 'MonitoringOutputs': [{'S3Output': {'LocalPath': 'string', 'S3UploadMode': 'Continuous ' '| ' 'EndOfJob', 'S3Uri': 'string'}}]}, 'MonitoringResources': {'ClusterConfig': {'InstanceCount': 'integer', 'InstanceType': 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m4.xlarge ' '| ' 'ml.m4.2xlarge ' '| ' 'ml.m4.4xlarge ' '| ' 'ml.m4.10xlarge ' '| ' 'ml.m4.16xlarge ' '| ' 'ml.c4.xlarge ' '| ' 'ml.c4.2xlarge ' '| ' 'ml.c4.4xlarge ' '| ' 'ml.c4.8xlarge ' '| ' 'ml.p2.xlarge ' '| ' 'ml.p2.8xlarge ' '| ' 'ml.p2.16xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge', 'VolumeKmsKeyId': 'string', 'VolumeSizeInGB': 'integer'}}, 'NetworkConfig': {'EnableInterContainerTrafficEncryption': 'boolean', 'EnableNetworkIsolation': 'boolean', 'VpcConfig': {'SecurityGroupIds': ['string'], 'Subnets': ['string']}}, 'RoleArn': 'string', 'StoppingCondition': {'MaxRuntimeInSeconds': 'integer'}}, 'MonitoringJobDefinitionName': 'string', 'MonitoringType': 'DataQuality ' '| ' 'ModelQuality ' '| ' 'ModelBias ' '| ' 'ModelExplainability', 'ScheduleConfig': {'ScheduleExpression': 'string'}}, 'MonitoringScheduleName': 'string', 'MonitoringScheduleStatus': 'Pending ' '| ' 'Failed ' '| ' 'Scheduled ' '| ' 'Stopped', 'MonitoringType': 'DataQuality ' '| ' 'ModelQuality ' '| ModelBias ' '| ' 'ModelExplainability'}]}, 'ModelCard': {'Content': 'string', 'CreatedBy': {'DomainId': 'string', 'UserProfileArn': 'string', 'UserProfileName': 'string'}, 'CreationTime': 'timestamp', 'LastModifiedBy': {'DomainId': 'string', 'UserProfileArn': 'string', 'UserProfileName': 'string'}, 'LastModifiedTime': 'timestamp', 'ModelCardArn': 'string', 'ModelCardName': 'string', 'ModelCardStatus': 'Draft | PendingReview | ' 'Approved | Archived', 'ModelCardVersion': 'integer', 'ModelId': 'string', 'RiskRating': 'string', 'SecurityConfig': {'KmsKeyId': 'string'}, 'Tags': [{'Key': 'string', 'Value': 'string'}]}, 'TrainingJob': {'ExperimentConfig': {'RunName': 'string'}}, 'TrialComponent': {'RunName': 'string', 'SourceDetail': {'ProcessingJob': {'ExperimentConfig': {'RunName': 'string'}}, 'TrainingJob': {'ExperimentConfig': {'RunName': 'string'}}, 'TransformJob': {'ExperimentConfig': {'RunName': 'string'}}}}}}
Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.
You can query against the following value types: numeric, text, Boolean, and timestamp.
See also: AWS API Documentation
Request Syntax
client.search( Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup'|'Project'|'FeatureMetadata'|'HyperParameterTuningJob'|'ModelCard'|'Model', SearchExpression={ 'Filters': [ { 'Name': 'string', 'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In', 'Value': 'string' }, ], 'NestedFilters': [ { 'NestedPropertyName': 'string', 'Filters': [ { 'Name': 'string', 'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In', 'Value': 'string' }, ] }, ], 'SubExpressions': [ {'... recursive ...'}, ], 'Operator': 'And'|'Or' }, SortBy='string', SortOrder='Ascending'|'Descending', NextToken='string', MaxResults=123 )
string
[REQUIRED]
The name of the Amazon SageMaker resource to search for.
dict
A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions , NestedFilters , and Filters that can be included in a SearchExpression object is 50.
Filters (list) --
A list of filter objects.
(dict) --
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.
In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form Tags.<key> .
Name (string) -- [REQUIRED]
A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.
Operator (string) --
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of Name equals Value .
NotEquals
The value of Name doesn't equal Value .
Exists
The Name property exists.
NotExists
The Name property does not exist.
GreaterThan
The value of Name is greater than Value . Not supported for text properties.
GreaterThanOrEqualTo
The value of Name is greater than or equal to Value . Not supported for text properties.
LessThan
The value of Name is less than Value . Not supported for text properties.
LessThanOrEqualTo
The value of Name is less than or equal to Value . Not supported for text properties.
In
The value of Name is one of the comma delimited strings in Value . Only supported for text properties.
Contains
The value of Name contains the string Value . Only supported for text properties.
A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "
Value (string) --
A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
NestedFilters (list) --
A list of nested filter objects.
(dict) --
A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.
For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:
'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
NestedPropertyName (string) -- [REQUIRED]
The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig .
Filters (list) -- [REQUIRED]
A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri .
(dict) --
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.
In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form Tags.<key> .
Name (string) -- [REQUIRED]
A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.
Operator (string) --
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of Name equals Value .
NotEquals
The value of Name doesn't equal Value .
Exists
The Name property exists.
NotExists
The Name property does not exist.
GreaterThan
The value of Name is greater than Value . Not supported for text properties.
GreaterThanOrEqualTo
The value of Name is greater than or equal to Value . Not supported for text properties.
LessThan
The value of Name is less than Value . Not supported for text properties.
LessThanOrEqualTo
The value of Name is less than or equal to Value . Not supported for text properties.
In
The value of Name is one of the comma delimited strings in Value . Only supported for text properties.
Contains
The value of Name contains the string Value . Only supported for text properties.
A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "
Value (string) --
A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
SubExpressions (list) --
A list of search expression objects.
(dict) --
A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.
A SearchExpression contains the following components:
A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.
A Boolean operator: And or Or .
Operator (string) --
A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And . If only a single conditional statement needs to be true for the entire search expression to be true, specify Or . The default value is And .
string
The name of the resource property used to sort the SearchResults . The default is LastModifiedTime .
string
How SearchResults are ordered. Valid values are Ascending or Descending . The default is Descending .
string
If more than MaxResults resources match the specified SearchExpression , the response includes a NextToken . The NextToken can be passed to the next SearchRequest to continue retrieving results.
integer
The maximum number of results to return.
dict
Response Syntax
# This section is too large to render. # Please see the AWS API Documentation linked below.
Response Structure
# This section is too large to render. # Please see the AWS API Documentation linked below.
{'DefaultSpaceSettings': {'ExecutionRole': 'string', 'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}], 'DefaultResourceSpec': {'InstanceType': 'system ' '| ' 'ml.t3.micro ' '| ' 'ml.t3.small ' '| ' 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.8xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.16xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.8xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.16xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.12xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5.24xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.p3dn.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge', 'LifecycleConfigArn': 'string', 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string'}, 'LifecycleConfigArns': ['string']}, 'KernelGatewayAppSettings': {'CustomImages': [{'AppImageConfigName': 'string', 'ImageName': 'string', 'ImageVersionNumber': 'integer'}], 'DefaultResourceSpec': {'InstanceType': 'system ' '| ' 'ml.t3.micro ' '| ' 'ml.t3.small ' '| ' 'ml.t3.medium ' '| ' 'ml.t3.large ' '| ' 'ml.t3.xlarge ' '| ' 'ml.t3.2xlarge ' '| ' 'ml.m5.large ' '| ' 'ml.m5.xlarge ' '| ' 'ml.m5.2xlarge ' '| ' 'ml.m5.4xlarge ' '| ' 'ml.m5.8xlarge ' '| ' 'ml.m5.12xlarge ' '| ' 'ml.m5.16xlarge ' '| ' 'ml.m5.24xlarge ' '| ' 'ml.m5d.large ' '| ' 'ml.m5d.xlarge ' '| ' 'ml.m5d.2xlarge ' '| ' 'ml.m5d.4xlarge ' '| ' 'ml.m5d.8xlarge ' '| ' 'ml.m5d.12xlarge ' '| ' 'ml.m5d.16xlarge ' '| ' 'ml.m5d.24xlarge ' '| ' 'ml.c5.large ' '| ' 'ml.c5.xlarge ' '| ' 'ml.c5.2xlarge ' '| ' 'ml.c5.4xlarge ' '| ' 'ml.c5.9xlarge ' '| ' 'ml.c5.12xlarge ' '| ' 'ml.c5.18xlarge ' '| ' 'ml.c5.24xlarge ' '| ' 'ml.p3.2xlarge ' '| ' 'ml.p3.8xlarge ' '| ' 'ml.p3.16xlarge ' '| ' 'ml.p3dn.24xlarge ' '| ' 'ml.g4dn.xlarge ' '| ' 'ml.g4dn.2xlarge ' '| ' 'ml.g4dn.4xlarge ' '| ' 'ml.g4dn.8xlarge ' '| ' 'ml.g4dn.12xlarge ' '| ' 'ml.g4dn.16xlarge ' '| ' 'ml.r5.large ' '| ' 'ml.r5.xlarge ' '| ' 'ml.r5.2xlarge ' '| ' 'ml.r5.4xlarge ' '| ' 'ml.r5.8xlarge ' '| ' 'ml.r5.12xlarge ' '| ' 'ml.r5.16xlarge ' '| ' 'ml.r5.24xlarge ' '| ' 'ml.g5.xlarge ' '| ' 'ml.g5.2xlarge ' '| ' 'ml.g5.4xlarge ' '| ' 'ml.g5.8xlarge ' '| ' 'ml.g5.16xlarge ' '| ' 'ml.g5.12xlarge ' '| ' 'ml.g5.24xlarge ' '| ' 'ml.g5.48xlarge', 'LifecycleConfigArn': 'string', 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string'}, 'LifecycleConfigArns': ['string']}, 'SecurityGroups': ['string']}, 'DefaultUserSettings': {'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}]}}}
Updates the default settings for new user profiles in the domain.
See also: AWS API Documentation
Request Syntax
client.update_domain( DomainId='string', DefaultUserSettings={ 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'SharingSettings': { 'NotebookOutputOption': 'Allowed'|'Disabled', 'S3OutputPath': 'string', 'S3KmsKeyId': 'string' }, 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] }, 'TensorBoardAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'RStudioServerProAppSettings': { 'AccessStatus': 'ENABLED'|'DISABLED', 'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER' }, 'RSessionAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ] }, 'CanvasAppSettings': { 'TimeSeriesForecastingSettings': { 'Status': 'ENABLED'|'DISABLED', 'AmazonForecastRoleArn': 'string' } } }, DomainSettingsForUpdate={ 'RStudioServerProDomainSettingsForUpdate': { 'DomainExecutionRoleArn': 'string', 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'ExecutionRoleIdentityConfig': 'USER_PROFILE_NAME'|'DISABLED' }, DefaultSpaceSettings={ 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] } } )
string
[REQUIRED]
The ID of the domain to be updated.
dict
A collection of settings.
ExecutionRole (string) --
The execution role for the user.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .
Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .
Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
(string) --
SharingSettings (dict) --
Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption (string) --
Whether to include the notebook cell output when sharing the notebook. The default is Disabled .
S3OutputPath (string) --
When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.
S3KmsKeyId (string) --
When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings (dict) --
The Jupyter server's app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The kernel gateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
TensorBoardAppSettings (dict) --
The TensorBoard app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings (dict) --
A collection of settings that configure user interaction with the RStudioServerPro app.
AccessStatus (string) --
Indicates whether the current user has access to the RStudioServerPro app.
UserGroup (string) --
The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.
RSessionAppSettings (dict) --
A collection of settings that configure the RSessionGateway app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a RSession app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
CanvasAppSettings (dict) --
The Canvas app settings.
TimeSeriesForecastingSettings (dict) --
Time series forecast settings for the Canvas app.
Status (string) --
Describes whether time series forecasting is enabled or disabled in the Canvas app.
AmazonForecastRoleArn (string) --
The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
dict
A collection of DomainSettings configuration values to update.
RStudioServerProDomainSettingsForUpdate (dict) --
A collection of RStudioServerPro Domain-level app settings to update.
DomainExecutionRoleArn (string) -- [REQUIRED]
The execution role for the RStudioServerPro Domain-level app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
ExecutionRoleIdentityConfig (string) --
The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
dict
The default settings used to create a space within the Domain.
ExecutionRole (string) --
The execution role for the space.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud that the space uses for communication.
(string) --
JupyterServerAppSettings (dict) --
The JupyterServer app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The KernelGateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
dict
Response Syntax
{ 'DomainArn': 'string' }
Response Structure
(dict) --
DomainArn (string) --
The Amazon Resource Name (ARN) of the domain.
{'UserSettings': {'JupyterServerAppSettings': {'CodeRepositories': [{'RepositoryUrl': 'string'}]}}}
Updates a user profile.
See also: AWS API Documentation
Request Syntax
client.update_user_profile( DomainId='string', UserProfileName='string', UserSettings={ 'ExecutionRole': 'string', 'SecurityGroups': [ 'string', ], 'SharingSettings': { 'NotebookOutputOption': 'Allowed'|'Disabled', 'S3OutputPath': 'string', 'S3KmsKeyId': 'string' }, 'JupyterServerAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'LifecycleConfigArns': [ 'string', ], 'CodeRepositories': [ { 'RepositoryUrl': 'string' }, ] }, 'KernelGatewayAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ], 'LifecycleConfigArns': [ 'string', ] }, 'TensorBoardAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' } }, 'RStudioServerProAppSettings': { 'AccessStatus': 'ENABLED'|'DISABLED', 'UserGroup': 'R_STUDIO_ADMIN'|'R_STUDIO_USER' }, 'RSessionAppSettings': { 'DefaultResourceSpec': { 'SageMakerImageArn': 'string', 'SageMakerImageVersionArn': 'string', 'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.8xlarge'|'ml.m5d.12xlarge'|'ml.m5d.16xlarge'|'ml.m5d.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge'|'ml.g5.xlarge'|'ml.g5.2xlarge'|'ml.g5.4xlarge'|'ml.g5.8xlarge'|'ml.g5.16xlarge'|'ml.g5.12xlarge'|'ml.g5.24xlarge'|'ml.g5.48xlarge', 'LifecycleConfigArn': 'string' }, 'CustomImages': [ { 'ImageName': 'string', 'ImageVersionNumber': 123, 'AppImageConfigName': 'string' }, ] }, 'CanvasAppSettings': { 'TimeSeriesForecastingSettings': { 'Status': 'ENABLED'|'DISABLED', 'AmazonForecastRoleArn': 'string' } } } )
string
[REQUIRED]
The domain ID.
string
[REQUIRED]
The user profile name.
dict
A collection of settings.
ExecutionRole (string) --
The execution role for the user.
SecurityGroups (list) --
The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly .
Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly .
Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
(string) --
SharingSettings (dict) --
Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption (string) --
Whether to include the notebook cell output when sharing the notebook. The default is Disabled .
S3OutputPath (string) --
When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the shared notebook snapshots.
S3KmsKeyId (string) --
When NotebookOutputOption is Allowed , the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings (dict) --
The Jupyter server's app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
CodeRepositories (list) --
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
(dict) --
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl (string) -- [REQUIRED]
The URL of the Git repository.
KernelGatewayAppSettings (dict) --
The kernel gateway app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a KernelGateway app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
LifecycleConfigArns (list) --
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note
To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
(string) --
TensorBoardAppSettings (dict) --
The TensorBoard app settings.
DefaultResourceSpec (dict) --
The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings (dict) --
A collection of settings that configure user interaction with the RStudioServerPro app.
AccessStatus (string) --
Indicates whether the current user has access to the RStudioServerPro app.
UserGroup (string) --
The level of permissions that the user has within the RStudioServerPro app. This value defaults to User. The Admin value allows the user access to the RStudio Administrative Dashboard.
RSessionAppSettings (dict) --
A collection of settings that configure the RSessionGateway app.
DefaultResourceSpec (dict) --
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn (string) --
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn (string) --
The ARN of the image version created on the instance.
InstanceType (string) --
The instance type that the image version runs on.
Note
JupyterServer apps only support the system value.
For KernelGateway apps , the system value is translated to ml.t3.medium . KernelGateway apps also support all other values for available instance types.
LifecycleConfigArn (string) --
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages (list) --
A list of custom SageMaker images that are configured to run as a RSession app.
(dict) --
A custom SageMaker image. For more information, see Bring your own SageMaker image.
ImageName (string) -- [REQUIRED]
The name of the CustomImage. Must be unique to your account.
ImageVersionNumber (integer) --
The version number of the CustomImage.
AppImageConfigName (string) -- [REQUIRED]
The name of the AppImageConfig.
CanvasAppSettings (dict) --
The Canvas app settings.
TimeSeriesForecastingSettings (dict) --
Time series forecast settings for the Canvas app.
Status (string) --
Describes whether time series forecasting is enabled or disabled in the Canvas app.
AmazonForecastRoleArn (string) --
The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile , Canvas uses the execution role specified in the Domain that owns the UserProfile . To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
dict
Response Syntax
{ 'UserProfileArn': 'string' }
Response Structure
(dict) --
UserProfileArn (string) --
The user profile Amazon Resource Name (ARN).