Amazon SageMaker Service

2019/12/04 - Amazon SageMaker Service - 56 new 19 updated api methods

Changes  Update sagemaker client to latest version

DeleteUserProfile (new) Link ¶

Deletes a user profile.

See also: AWS API Documentation

Request Syntax

client.delete_user_profile(
    DomainId='string',
    UserProfileName='string'
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The user profile name.

returns

None

StartMonitoringSchedule (new) Link ¶

Starts a previously stopped monitoring schedule.

Note

New monitoring schedules are immediately started after creation.

See also: AWS API Documentation

Request Syntax

client.start_monitoring_schedule(
    MonitoringScheduleName='string'
)
type MonitoringScheduleName

string

param MonitoringScheduleName

[REQUIRED]

The name of the schedule to start.

returns

None

DescribeFlowDefinition (new) Link ¶

Returns information about the specified flow definition.

See also: AWS API Documentation

Request Syntax

client.describe_flow_definition(
    FlowDefinitionName='string'
)
type FlowDefinitionName

string

param FlowDefinitionName

[REQUIRED]

The name of the flow definition.

rtype

dict

returns

Response Syntax

{
    'FlowDefinitionArn': 'string',
    'FlowDefinitionName': 'string',
    'FlowDefinitionStatus': 'Initializing'|'Active'|'Failed'|'Deleting'|'Deleted',
    'CreationTime': datetime(2015, 1, 1),
    'HumanLoopActivationConfig': {
        'HumanLoopRequestSource': {
            'AwsManagedHumanLoopRequestSource': 'AWS/Rekognition/DetectModerationLabels/Image/V3'|'AWS/Textract/AnalyzeDocument/Forms/V1'
        },
        'HumanLoopActivationConditionsConfig': {
            'HumanLoopActivationConditions': 'string'
        }
    },
    'HumanLoopConfig': {
        'WorkteamArn': 'string',
        'HumanTaskUiArn': 'string',
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'TaskCount': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskKeywords': [
            'string',
        ],
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    'OutputConfig': {
        'S3OutputPath': 'string',
        'KmsKeyId': 'string'
    },
    'RoleArn': 'string',
    'FailureReason': 'string'
}

Response Structure

  • (dict) --

    • FlowDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the flow defintion.

    • FlowDefinitionName (string) --

      The Amazon Resource Name (ARN) of the flow definition.

    • FlowDefinitionStatus (string) --

      The status of the flow definition. Valid values are listed below.

    • CreationTime (datetime) --

      The timestamp when the flow definition was created.

    • HumanLoopActivationConfig (dict) --

      An object containing information about what triggers a human review workflow.

      • HumanLoopRequestSource (dict) --

        Container for configuring the source of human task requests.

        • AwsManagedHumanLoopRequestSource (string) --

          Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:

      • HumanLoopActivationConditionsConfig (dict) --

        Container structure for defining under what conditions SageMaker creates a human loop.

        • HumanLoopActivationConditions (string) --

          JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract.

    • HumanLoopConfig (dict) --

      An object containing information about who works on the task, the workforce task price, and other task details.

      • WorkteamArn (string) --

        Amazon Resource Name (ARN) of a team of workers.

      • HumanTaskUiArn (string) --

        The Amazon Resource Name (ARN) of the human task user interface.

      • TaskTitle (string) --

        A title for the human worker task.

      • TaskDescription (string) --

        A description for the human worker task.

      • TaskCount (integer) --

        The number of human tasks.

      • TaskAvailabilityLifetimeInSeconds (integer) --

        The length of time that a task remains available for labeling by human workers.

      • TaskTimeLimitInSeconds (integer) --

        The amount of time that a worker has to complete a task.

      • TaskKeywords (list) --

        Keywords used to describe the task so that workers can discover the task.

        • (string) --

      • PublicWorkforceTaskPrice (dict) --

        Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

        Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

        • 0.036

        • 0.048

        • 0.060

        • 0.072

        • 0.120

        • 0.240

        • 0.360

        • 0.480

        • 0.600

        • 0.720

        • 0.840

        • 0.960

        • 1.080

        • 1.200

        Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

        • 0.012

        • 0.024

        • 0.036

        • 0.048

        • 0.060

        • 0.072

        • 0.120

        • 0.240

        • 0.360

        • 0.480

        • 0.600

        • 0.720

        • 0.840

        • 0.960

        • 1.080

        • 1.200

        Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

        • 0.840

        • 0.960

        • 1.080

        • 1.200

        Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

        • 2.400

        • 2.280

        • 2.160

        • 2.040

        • 1.920

        • 1.800

        • 1.680

        • 1.560

        • 1.440

        • 1.320

        • 1.200

        • 1.080

        • 0.960

        • 0.840

        • 0.720

        • 0.600

        • 0.480

        • 0.360

        • 0.240

        • 0.120

        • 0.072

        • 0.060

        • 0.048

        • 0.036

        • 0.024

        • 0.012

        Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

        • 1.200

        • 1.080

        • 0.960

        • 0.840

        • 0.720

        • 0.600

        • 0.480

        • 0.360

        • 0.240

        • 0.120

        • 0.072

        • 0.060

        • 0.048

        • 0.036

        • 0.024

        • 0.012

        Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

        • 1.200

        • 1.080

        • 0.960

        • 0.840

        • 0.720

        • 0.600

        • 0.480

        • 0.360

        • 0.240

        • 0.120

        • 0.072

        • 0.060

        • 0.048

        • 0.036

        • 0.024

        • 0.012

        • AmountInUsd (dict) --

          Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

          • Dollars (integer) --

            The whole number of dollars in the amount.

          • Cents (integer) --

            The fractional portion, in cents, of the amount.

          • TenthFractionsOfACent (integer) --

            Fractions of a cent, in tenths.

    • OutputConfig (dict) --

      An object containing information about the output file.

      • S3OutputPath (string) --

        The Amazon S3 path where the object containing human output will be made available.

      • KmsKeyId (string) --

        The Amazon Key Management Service (KMS) key ID for server-side encryption.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) execution role for the flow definition.

    • FailureReason (string) --

DescribeUserProfile (new) Link ¶

Describes the user profile.

See also: AWS API Documentation

Request Syntax

client.describe_user_profile(
    DomainId='string',
    UserProfileName='string'
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The user profile name.

rtype

dict

returns

Response Syntax

{
    'DomainId': 'string',
    'UserProfileArn': 'string',
    'UserProfileName': 'string',
    'HomeEfsFileSystemUid': 'string',
    'Status': 'Deleting'|'Failed'|'InService'|'Pending',
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'SingleSignOnUserIdentifier': 'string',
    'SingleSignOnUserValue': 'string',
    'UserSettings': {
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        }
    }
}

Response Structure

  • (dict) --

    • DomainId (string) --

      The domain ID.

    • UserProfileArn (string) --

      The user profile Amazon Resource Name (ARN).

    • UserProfileName (string) --

      The user profile name.

    • HomeEfsFileSystemUid (string) --

      The homa Amazon Elastic File System (EFS) Uid.

    • Status (string) --

      The status.

    • LastModifiedTime (datetime) --

      The last modified time.

    • CreationTime (datetime) --

      The creation time.

    • FailureReason (string) --

      The failure reason.

    • SingleSignOnUserIdentifier (string) --

      The SSO user identifier.

    • SingleSignOnUserValue (string) --

      The SSO user value.

    • UserSettings (dict) --

      A collection of settings.

      • ExecutionRole (string) --

        The execution role for the user.

      • SecurityGroups (list) --

        The security groups.

        • (string) --

      • SharingSettings (dict) --

        The sharing settings.

        • NotebookOutputOption (string) --

          The notebook output option.

        • S3OutputPath (string) --

          The Amazon S3 output path.

        • S3KmsKeyId (string) --

          The AWS Key Management Service encryption key ID.

      • JupyterServerAppSettings (dict) --

        The Jupyter server's app settings.

        • DefaultResourceSpec (dict) --

          The instance type and quantity.

          • EnvironmentArn (string) --

            The Amazon Resource Name (ARN) of the environment.

          • InstanceType (string) --

            The instance type.

      • KernelGatewayAppSettings (dict) --

        The kernel gateway app settings.

        • DefaultResourceSpec (dict) --

          The instance type and quantity.

          • EnvironmentArn (string) --

            The Amazon Resource Name (ARN) of the environment.

          • InstanceType (string) --

            The instance type.

      • TensorBoardAppSettings (dict) --

        The TensorBoard app settings.

        • DefaultResourceSpec (dict) --

          The instance type and quantity.

          • EnvironmentArn (string) --

            The Amazon Resource Name (ARN) of the environment.

          • InstanceType (string) --

            The instance type.

CreateAutoMLJob (new) Link ¶

Creates an AutoPilot job.

See also: AWS API Documentation

Request Syntax

client.create_auto_ml_job(
    AutoMLJobName='string',
    InputDataConfig=[
        {
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix',
                    'S3Uri': 'string'
                }
            },
            'CompressionType': 'None'|'Gzip',
            'TargetAttributeName': 'string'
        },
    ],
    OutputDataConfig={
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    ProblemType='BinaryClassification'|'MulticlassClassification'|'Regression',
    AutoMLJobObjective={
        'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'
    },
    AutoMLJobConfig={
        'CompletionCriteria': {
            'MaxCandidates': 123,
            'MaxRuntimePerTrainingJobInSeconds': 123,
            'MaxAutoMLJobRuntimeInSeconds': 123
        },
        'SecurityConfig': {
            'VolumeKmsKeyId': 'string',
            'EnableInterContainerTrafficEncryption': True|False,
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        }
    },
    RoleArn='string',
    GenerateCandidateDefinitionsOnly=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type AutoMLJobName

string

param AutoMLJobName

[REQUIRED]

Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.

type InputDataConfig

list

param InputDataConfig

[REQUIRED]

Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.

  • (dict) --

    Similar to Channel. A channel is a named input source that training algorithms can consume. Refer to Channel for detailed descriptions.

    • DataSource (dict) -- [REQUIRED]

      The data source.

      • S3DataSource (dict) -- [REQUIRED]

        The Amazon S3 location of the data.

        • S3DataType (string) -- [REQUIRED]

          The data type.

        • S3Uri (string) -- [REQUIRED]

          The URL to the Amazon S3 data source.

    • CompressionType (string) --

      You can use Gzip or None. The default value is None.

    • TargetAttributeName (string) -- [REQUIRED]

      The name of the target variable in supervised learning, a.k.a. ‘y’.

type OutputDataConfig

dict

param OutputDataConfig

[REQUIRED]

Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.

  • KmsKeyId (string) --

    The AWS KMS encryption key ID.

  • S3OutputPath (string) -- [REQUIRED]

    The Amazon S3 output path. Must be 128 characters or less.

type ProblemType

string

param ProblemType

Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.

type AutoMLJobObjective

dict

param AutoMLJobObjective

Defines the job's objective. You provide a MetricName and AutoML will infer minimize or maximize. If this is not provided, the most commonly used ObjectiveMetric for problem type will be selected.

  • MetricName (string) -- [REQUIRED]

    The name of the metric.

type AutoMLJobConfig

dict

param AutoMLJobConfig

Contains CompletionCriteria and SecurityConfig.

  • CompletionCriteria (dict) --

    How long a job is allowed to run, or how many candidates a job is allowed to generate.

    • MaxCandidates (integer) --

      The maximum number of times a training job is allowed to run.

    • MaxRuntimePerTrainingJobInSeconds (integer) --

      The maximum time, in seconds, a job is allowed to run.

    • MaxAutoMLJobRuntimeInSeconds (integer) --

      The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.

  • SecurityConfig (dict) --

    Security configuration for traffic encryption or Amazon VPC settings.

    • VolumeKmsKeyId (string) --

      The key used to encrypt stored data.

    • EnableInterContainerTrafficEncryption (boolean) --

      Whether to use traffic encryption between the container layers.

    • VpcConfig (dict) --

      VPC configuration.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --

      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model.

        Note

        Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

        • (string) --

type RoleArn

string

param RoleArn

[REQUIRED]

The ARN of the role that will be used to access the data.

type GenerateCandidateDefinitionsOnly

boolean

param GenerateCandidateDefinitionsOnly

This will generate possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

type Tags

list

param Tags

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'AutoMLJobArn': 'string'
}

Response Structure

  • (dict) --

    • AutoMLJobArn (string) --

      When a job is created, it is assigned a unique ARN.

DeleteApp (new) Link ¶

Used to stop and delete an app.

See also: AWS API Documentation

Request Syntax

client.delete_app(
    DomainId='string',
    UserProfileName='string',
    AppType='JupyterServer'|'KernelGateway'|'TensorBoard',
    AppName='string'
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The user profile name.

type AppType

string

param AppType

[REQUIRED]

The type of app.

type AppName

string

param AppName

[REQUIRED]

The name of the app.

returns

None

CreateHumanTaskUi (new) Link ¶

Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.

See also: AWS API Documentation

Request Syntax

client.create_human_task_ui(
    HumanTaskUiName='string',
    UiTemplate={
        'Content': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type HumanTaskUiName

string

param HumanTaskUiName

[REQUIRED]

The name of the user interface you are creating.

type UiTemplate

dict

param UiTemplate

[REQUIRED]

The Liquid template for the worker user interface.

  • Content (string) -- [REQUIRED]

    The content of the Liquid template for the worker user interface.

type Tags

list

param Tags

An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'HumanTaskUiArn': 'string'
}

Response Structure

  • (dict) --

    • HumanTaskUiArn (string) --

      The Amazon Resource Name (ARN) of the human review workflow user interface you create.

UpdateUserProfile (new) Link ¶

Updates a user profile.

See also: AWS API Documentation

Request Syntax

client.update_user_profile(
    DomainId='string',
    UserProfileName='string',
    UserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        }
    }
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The user profile name.

type UserSettings

dict

param UserSettings

A collection of settings.

  • ExecutionRole (string) --

    The execution role for the user.

  • SecurityGroups (list) --

    The security groups.

    • (string) --

  • SharingSettings (dict) --

    The sharing settings.

    • NotebookOutputOption (string) --

      The notebook output option.

    • S3OutputPath (string) --

      The Amazon S3 output path.

    • S3KmsKeyId (string) --

      The AWS Key Management Service encryption key ID.

  • JupyterServerAppSettings (dict) --

    The Jupyter server's app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • KernelGatewayAppSettings (dict) --

    The kernel gateway app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • TensorBoardAppSettings (dict) --

    The TensorBoard app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

rtype

dict

returns

Response Syntax

{
    'UserProfileArn': 'string'
}

Response Structure

  • (dict) --

    • UserProfileArn (string) --

      The user profile Amazon Resource Name (ARN).

ListApps (new) Link ¶

Lists apps.

See also: AWS API Documentation

Request Syntax

client.list_apps(
    NextToken='string',
    MaxResults=123,
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime',
    DomainIdEquals='string',
    UserProfileNameEquals='string'
)
type NextToken

string

param NextToken

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

type MaxResults

integer

param MaxResults

Returns a list up to a specified limit.

type SortOrder

string

param SortOrder

The sort order for the results. The default is Ascending.

type SortBy

string

param SortBy

The parameter by which to sort the results. The default is CreationTime.

type DomainIdEquals

string

param DomainIdEquals

A parameter to search for the domain ID.

type UserProfileNameEquals

string

param UserProfileNameEquals

A parameter to search by user profile name.

rtype

dict

returns

Response Syntax

{
    'Apps': [
        {
            'DomainId': 'string',
            'UserProfileName': 'string',
            'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard',
            'AppName': 'string',
            'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Apps (list) --

      The list of apps.

      • (dict) --

        The app's details.

        • DomainId (string) --

          The domain ID.

        • UserProfileName (string) --

          The user profile name.

        • AppType (string) --

          The type of app.

        • AppName (string) --

          The name of the app.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

ListCandidatesForAutoMLJob (new) Link ¶

List the Candidates created for the job.

See also: AWS API Documentation

Request Syntax

client.list_candidates_for_auto_ml_job(
    AutoMLJobName='string',
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    CandidateNameEquals='string',
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'Status'|'FinalObjectiveMetricValue',
    MaxResults=123,
    NextToken='string'
)
type AutoMLJobName

string

param AutoMLJobName

[REQUIRED]

List the Candidates created for the job by providing the job's name.

type StatusEquals

string

param StatusEquals

List the Candidates for the job and filter by status.

type CandidateNameEquals

string

param CandidateNameEquals

List the Candidates for the job and filter by candidate name.

type SortOrder

string

param SortOrder

The sort order for the results. The default is Ascending.

type SortBy

string

param SortBy

The parameter by which to sort the results. The default is Descending.

type MaxResults

integer

param MaxResults

List the job's Candidates up to a specified limit.

type NextToken

string

param NextToken

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

rtype

dict

returns

Response Syntax

{
    'Candidates': [
        {
            'CandidateName': 'string',
            'FinalAutoMLJobObjectiveMetric': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro',
                'Value': ...
            },
            'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed',
            'CandidateSteps': [
                {
                    'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob',
                    'CandidateStepArn': 'string',
                    'CandidateStepName': 'string'
                },
            ],
            'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'InferenceContainers': [
                {
                    'Image': 'string',
                    'ModelDataUrl': 'string',
                    'Environment': {
                        'string': 'string'
                    }
                },
            ],
            'CreationTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Candidates (list) --

      Summaries about the Candidates.

      • (dict) --

        An AutoPilot job will return recommendations, or candidates. Each candidate has futher details about the steps involed, and the status.

        • CandidateName (string) --

          The candidate name.

        • FinalAutoMLJobObjectiveMetric (dict) --

          The candidate result from a job.

          • Type (string) --

            The metric type used.

          • MetricName (string) --

            The name of the metric.

          • Value (float) --

            The value of the metric.

        • ObjectiveStatus (string) --

          The objective status.

        • CandidateSteps (list) --

          The candidate's steps.

          • (dict) --

            Information about the steps for a Candidate, and what step it is working on.

            • CandidateStepType (string) --

              Whether the Candidate is at the transform, training, or processing step.

            • CandidateStepArn (string) --

              The ARN for the Candidate's step.

            • CandidateStepName (string) --

              The name for the Candidate's step.

        • CandidateStatus (string) --

          The candidate's status.

        • InferenceContainers (list) --

          The inference containers.

          • (dict) --

            A list of container definitions that describe the different containers that make up one AutoML candidate. Refer to ContainerDefinition for more details.

            • Image (string) --

              The ECR path of the container. Refer to ContainerDefinition for more details.

            • ModelDataUrl (string) --

              The location of the model artifacts. Refer to ContainerDefinition for more details.

            • Environment (dict) --

              Environment variables to set in the container. Refer to ContainerDefinition for more details.

              • (string) --

                • (string) --

        • CreationTime (datetime) --

          The creation time.

        • EndTime (datetime) --

          The end time.

        • LastModifiedTime (datetime) --

          The last modified time.

        • FailureReason (string) --

          The failure reason.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

ListFlowDefinitions (new) Link ¶

Returns information about the flow definitions in your account.

See also: AWS API Documentation

Request Syntax

client.list_flow_definitions(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
type CreationTimeAfter

datetime

param CreationTimeAfter

A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.

type CreationTimeBefore

datetime

param CreationTimeBefore

A filter that returns only flow definitions that were created before the specified timestamp.

type SortOrder

string

param SortOrder

An optional value that specifies whether you want the results sorted in Ascending or Descending order.

type NextToken

string

param NextToken

A token to resume pagination.

type MaxResults

integer

param MaxResults

The total number of items to return. If the total number of available items is more than the value specified in MaxResults , then a NextToken will be provided in the output that you can use to resume pagination.

rtype

dict

returns

Response Syntax

{
    'FlowDefinitionSummaries': [
        {
            'FlowDefinitionName': 'string',
            'FlowDefinitionArn': 'string',
            'FlowDefinitionStatus': 'Initializing'|'Active'|'Failed'|'Deleting'|'Deleted',
            'CreationTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • FlowDefinitionSummaries (list) --

      An array of objects describing the flow definitions.

      • (dict) --

        Contains summary information about the flow definition.

        • FlowDefinitionName (string) --

          The name of the flow definition.

        • FlowDefinitionArn (string) --

          The Amazon Resource Name (ARN) of the flow definition.

        • FlowDefinitionStatus (string) --

          The status of the flow definition. Valid values:

        • CreationTime (datetime) --

          The timestamp when SageMaker created the flow definition.

        • FailureReason (string) --

          The reason why the flow definition creation failed. A failure reason is returned only when the flow definition status is Failed .

    • NextToken (string) --

      A token to resume pagination.

ListMonitoringSchedules (new) Link ¶

Returns list of all monitoring schedules.

See also: AWS API Documentation

Request Syntax

client.list_monitoring_schedules(
    EndpointName='string',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    NameContains='string',
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'Failed'|'Scheduled'|'Stopped'
)
type EndpointName

string

param EndpointName

Name of a specific endpoint to fetch schedules for.

type SortBy

string

param SortBy

Whether to sort results by Status , CreationTime , ScheduledTime field. The default is CreationTime .

type SortOrder

string

param SortOrder

Whether to sort the results in Ascending or Descending order. The default is Descending .

type NextToken

string

param NextToken

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

type MaxResults

integer

param MaxResults

The maximum number of jobs to return in the response. The default value is 10.

type NameContains

string

param NameContains

Filter for monitoring schedules whose name contains a specified string.

type CreationTimeBefore

datetime

param CreationTimeBefore

A filter that returns only monitoring schedules created before a specified time.

type CreationTimeAfter

datetime

param CreationTimeAfter

A filter that returns only monitoring schedules created after a specified time.

type LastModifiedTimeBefore

datetime

param LastModifiedTimeBefore

A filter that returns only monitoring schedules modified before a specified time.

type LastModifiedTimeAfter

datetime

param LastModifiedTimeAfter

A filter that returns only monitoring schedules modified after a specified time.

type StatusEquals

string

param StatusEquals

A filter that returns only monitoring schedules modified before a specified time.

rtype

dict

returns

Response Syntax

{
    'MonitoringScheduleSummaries': [
        {
            'MonitoringScheduleName': 'string',
            'MonitoringScheduleArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'MonitoringScheduleStatus': 'Pending'|'Failed'|'Scheduled'|'Stopped',
            'EndpointName': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleSummaries (list) --

      A JSON array in which each element is a summary for a monitoring schedule.

      • (dict) --

        Summarizes the monitoring schedule.

        • MonitoringScheduleName (string) --

          The name of the monitoring schedule.

        • MonitoringScheduleArn (string) --

          The Amazon Resource Name (ARN) of the monitoring schedule.

        • CreationTime (datetime) --

          The creation time of the monitoring schedule.

        • LastModifiedTime (datetime) --

          The last time the monitoring schedule was modified.

        • MonitoringScheduleStatus (string) --

          The status of the monitoring schedule.

        • EndpointName (string) --

          The name of the endpoint using the monitoring schedule.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques

DeleteDomain (new) Link ¶

Used to delete a domain. If you on-boarded with IAM mode, you will need to delete your domain to on-board again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.

See also: AWS API Documentation

Request Syntax

client.delete_domain(
    DomainId='string',
    RetentionPolicy={
        'HomeEfsFileSystem': 'Retain'|'Delete'
    }
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type RetentionPolicy

dict

param RetentionPolicy

The retention policy for this domain, which specifies which resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted).

  • HomeEfsFileSystem (string) --

    The home Amazon Elastic File System (EFS).

returns

None

CreateFlowDefinition (new) Link ¶

Creates a flow definition.

See also: AWS API Documentation

Request Syntax

client.create_flow_definition(
    FlowDefinitionName='string',
    HumanLoopActivationConfig={
        'HumanLoopRequestSource': {
            'AwsManagedHumanLoopRequestSource': 'AWS/Rekognition/DetectModerationLabels/Image/V3'|'AWS/Textract/AnalyzeDocument/Forms/V1'
        },
        'HumanLoopActivationConditionsConfig': {
            'HumanLoopActivationConditions': 'string'
        }
    },
    HumanLoopConfig={
        'WorkteamArn': 'string',
        'HumanTaskUiArn': 'string',
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'TaskCount': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskKeywords': [
            'string',
        ],
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    OutputConfig={
        'S3OutputPath': 'string',
        'KmsKeyId': 'string'
    },
    RoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type FlowDefinitionName

string

param FlowDefinitionName

[REQUIRED]

The name of your flow definition.

type HumanLoopActivationConfig

dict

param HumanLoopActivationConfig

An object containing information about the events that trigger a human workflow.

  • HumanLoopRequestSource (dict) -- [REQUIRED]

    Container for configuring the source of human task requests.

    • AwsManagedHumanLoopRequestSource (string) -- [REQUIRED]

      Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:

  • HumanLoopActivationConditionsConfig (dict) -- [REQUIRED]

    Container structure for defining under what conditions SageMaker creates a human loop.

    • HumanLoopActivationConditions (string) -- [REQUIRED]

      JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract.

type HumanLoopConfig

dict

param HumanLoopConfig

[REQUIRED]

An object containing information about the tasks the human reviewers will perform.

  • WorkteamArn (string) -- [REQUIRED]

    Amazon Resource Name (ARN) of a team of workers.

  • HumanTaskUiArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the human task user interface.

  • TaskTitle (string) -- [REQUIRED]

    A title for the human worker task.

  • TaskDescription (string) -- [REQUIRED]

    A description for the human worker task.

  • TaskCount (integer) -- [REQUIRED]

    The number of human tasks.

  • TaskAvailabilityLifetimeInSeconds (integer) --

    The length of time that a task remains available for labeling by human workers.

  • TaskTimeLimitInSeconds (integer) --

    The amount of time that a worker has to complete a task.

  • TaskKeywords (list) --

    Keywords used to describe the task so that workers can discover the task.

    • (string) --

  • PublicWorkforceTaskPrice (dict) --

    Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.

    Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

    • 0.036

    • 0.048

    • 0.060

    • 0.072

    • 0.120

    • 0.240

    • 0.360

    • 0.480

    • 0.600

    • 0.720

    • 0.840

    • 0.960

    • 1.080

    • 1.200

    Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

    • 0.012

    • 0.024

    • 0.036

    • 0.048

    • 0.060

    • 0.072

    • 0.120

    • 0.240

    • 0.360

    • 0.480

    • 0.600

    • 0.720

    • 0.840

    • 0.960

    • 1.080

    • 1.200

    Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

    • 0.840

    • 0.960

    • 1.080

    • 1.200

    Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

    • 2.400

    • 2.280

    • 2.160

    • 2.040

    • 1.920

    • 1.800

    • 1.680

    • 1.560

    • 1.440

    • 1.320

    • 1.200

    • 1.080

    • 0.960

    • 0.840

    • 0.720

    • 0.600

    • 0.480

    • 0.360

    • 0.240

    • 0.120

    • 0.072

    • 0.060

    • 0.048

    • 0.036

    • 0.024

    • 0.012

    Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

    • 1.200

    • 1.080

    • 0.960

    • 0.840

    • 0.720

    • 0.600

    • 0.480

    • 0.360

    • 0.240

    • 0.120

    • 0.072

    • 0.060

    • 0.048

    • 0.036

    • 0.024

    • 0.012

    Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

    • 1.200

    • 1.080

    • 0.960

    • 0.840

    • 0.720

    • 0.600

    • 0.480

    • 0.360

    • 0.240

    • 0.120

    • 0.072

    • 0.060

    • 0.048

    • 0.036

    • 0.024

    • 0.012

    • AmountInUsd (dict) --

      Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

      • Dollars (integer) --

        The whole number of dollars in the amount.

      • Cents (integer) --

        The fractional portion, in cents, of the amount.

      • TenthFractionsOfACent (integer) --

        Fractions of a cent, in tenths.

type OutputConfig

dict

param OutputConfig

[REQUIRED]

An object containing information about where the human review results will be uploaded.

  • S3OutputPath (string) -- [REQUIRED]

    The Amazon S3 path where the object containing human output will be made available.

  • KmsKeyId (string) --

    The Amazon Key Management Service (KMS) key ID for server-side encryption.

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298 .

type Tags

list

param Tags

An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'FlowDefinitionArn': 'string'
}

Response Structure

  • (dict) --

    • FlowDefinitionArn (string) --

      The Amazon Resource Name (ARN) of the flow definition you create.

ListAutoMLJobs (new) Link ¶

Request a list of jobs.

See also: AWS API Documentation

Request Syntax

client.list_auto_ml_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    SortOrder='Ascending'|'Descending',
    SortBy='Name'|'CreationTime'|'Status',
    MaxResults=123,
    NextToken='string'
)
type CreationTimeAfter

datetime

param CreationTimeAfter

Request a list of jobs, using a filter for time.

type CreationTimeBefore

datetime

param CreationTimeBefore

Request a list of jobs, using a filter for time.

type LastModifiedTimeAfter

datetime

param LastModifiedTimeAfter

Request a list of jobs, using a filter for time.

type LastModifiedTimeBefore

datetime

param LastModifiedTimeBefore

Request a list of jobs, using a filter for time.

type NameContains

string

param NameContains

Request a list of jobs, using a search filter for name.

type StatusEquals

string

param StatusEquals

Request a list of jobs, using a filter for status.

type SortOrder

string

param SortOrder

The sort order for the results. The default is Descending.

type SortBy

string

param SortBy

The parameter by which to sort the results. The default is AutoMLJobName.

type MaxResults

integer

param MaxResults

Request a list of jobs up to a specified limit.

type NextToken

string

param NextToken

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

rtype

dict

returns

Response Syntax

{
    'AutoMLJobSummaries': [
        {
            'AutoMLJobName': 'string',
            'AutoMLJobArn': 'string',
            'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
            'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated',
            'CreationTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • AutoMLJobSummaries (list) --

      Returns a summary list of jobs.

      • (dict) --

        Provides a summary about a job.

        • AutoMLJobName (string) --

          The name of the object you are requesting.

        • AutoMLJobArn (string) --

          The ARN of the job.

        • AutoMLJobStatus (string) --

          The job's status.

        • AutoMLJobSecondaryStatus (string) --

          The job's secondary status.

        • CreationTime (datetime) --

          When the job was created.

        • EndTime (datetime) --

          The end time.

        • LastModifiedTime (datetime) --

          When the job was last modified.

        • FailureReason (string) --

          The failure reason.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

ListHumanTaskUis (new) Link ¶

Returns information about the human task user interfaces in your account.

See also: AWS API Documentation

Request Syntax

client.list_human_task_uis(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
type CreationTimeAfter

datetime

param CreationTimeAfter

A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.

type CreationTimeBefore

datetime

param CreationTimeBefore

A filter that returns only human task user interfaces that were created before the specified timestamp.

type SortOrder

string

param SortOrder

An optional value that specifies whether you want the results sorted in Ascending or Descending order.

type NextToken

string

param NextToken

A token to resume pagination.

type MaxResults

integer

param MaxResults

The total number of items to return. If the total number of available items is more than the value specified in MaxResults , then a NextToken will be provided in the output that you can use to resume pagination.

rtype

dict

returns

Response Syntax

{
    'HumanTaskUiSummaries': [
        {
            'HumanTaskUiName': 'string',
            'HumanTaskUiArn': 'string',
            'CreationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • HumanTaskUiSummaries (list) --

      An array of objects describing the human task user interfaces.

      • (dict) --

        Container for human task user interface information.

        • HumanTaskUiName (string) --

          The name of the human task user interface.

        • HumanTaskUiArn (string) --

          The Amazon Resource Name (ARN) of the human task user interface.

        • CreationTime (datetime) --

          A timestamp when SageMaker created the human task user interface.

    • NextToken (string) --

      A token to resume pagination.

CreateDomain (new) Link ¶

Creates a Domain for Amazon SageMaker Amazon SageMaker Studio (Studio), which can be accessed by end-users in a web browser. A Domain has an associated directory, list of authorized users, and a variety of security, application, policies, and Amazon Virtual Private Cloud configurations. An AWS account is limited to one Domain, per region. Users within a domain can share notebook files and other artifacts with each other. When a Domain is created, an Amazon Elastic File System (EFS) is also created for use by all of the users within the Domain. Each user receives a private home directory within the EFS for notebooks, Git repositories, and data files.

See also: AWS API Documentation

Request Syntax

client.create_domain(
    DomainName='string',
    AuthMode='SSO'|'IAM',
    DefaultUserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        }
    },
    SubnetIds=[
        'string',
    ],
    VpcId='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    HomeEfsFileSystemKmsKeyId='string'
)
type DomainName

string

param DomainName

[REQUIRED]

A name for the domain.

type AuthMode

string

param AuthMode

[REQUIRED]

The mode of authentication that member use to access the domain.

type DefaultUserSettings

dict

param DefaultUserSettings

[REQUIRED]

The default user settings.

  • ExecutionRole (string) --

    The execution role for the user.

  • SecurityGroups (list) --

    The security groups.

    • (string) --

  • SharingSettings (dict) --

    The sharing settings.

    • NotebookOutputOption (string) --

      The notebook output option.

    • S3OutputPath (string) --

      The Amazon S3 output path.

    • S3KmsKeyId (string) --

      The AWS Key Management Service encryption key ID.

  • JupyterServerAppSettings (dict) --

    The Jupyter server's app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • KernelGatewayAppSettings (dict) --

    The kernel gateway app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • TensorBoardAppSettings (dict) --

    The TensorBoard app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

type SubnetIds

list

param SubnetIds

[REQUIRED]

Security setting to limit to a set of subnets.

  • (string) --

type VpcId

string

param VpcId

[REQUIRED]

Security setting to limit the domain's communication to a Amazon Virtual Private Cloud.

type Tags

list

param Tags

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type HomeEfsFileSystemKmsKeyId

string

param HomeEfsFileSystemKmsKeyId

The AWS Key Management Service encryption key ID.

rtype

dict

returns

Response Syntax

{
    'DomainArn': 'string',
    'Url': 'string'
}

Response Structure

  • (dict) --

    • DomainArn (string) --

      The Amazon Resource Name (ARN) of the created domain.

    • Url (string) --

      The URL to the created domain.

ListProcessingJobs (new) Link ¶

Lists processing jobs that satisfy various filters.

See also: AWS API Documentation

Request Syntax

client.list_processing_jobs(
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
type CreationTimeAfter

datetime

param CreationTimeAfter

A filter that returns only processing jobs created after the specified time.

type CreationTimeBefore

datetime

param CreationTimeBefore

A filter that returns only processing jobs created after the specified time.

type LastModifiedTimeAfter

datetime

param LastModifiedTimeAfter

A filter that returns only processing jobs modified after the specified time.

type LastModifiedTimeBefore

datetime

param LastModifiedTimeBefore

A filter that returns only processing jobs modified before the specified time.

type NameContains

string

param NameContains

A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.

type StatusEquals

string

param StatusEquals

A filter that retrieves only processing jobs with a specific status.

type SortBy

string

param SortBy

The field to sort results by. The default is CreationTime .

type SortOrder

string

param SortOrder

The sort order for results. The default is Ascending .

type NextToken

string

param NextToken

If the result of the previous ListProcessingJobs request was truncated, the response includes a NextToken . To retrieve the next set of processing jobs, use the token in the next request.

type MaxResults

integer

param MaxResults

The maximum number of processing jobs to return in the response.

rtype

dict

returns

Response Syntax

{
    'ProcessingJobSummaries': [
        {
            'ProcessingJobName': 'string',
            'ProcessingJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'ProcessingEndTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'FailureReason': 'string',
            'ExitMessage': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ProcessingJobSummaries (list) --

      An array of ProcessingJobSummary objects, each listing a processing job.

      • (dict) --

        Summary of information about a processing job.

        • ProcessingJobName (string) --

          The name of the processing job.

        • ProcessingJobArn (string) --

          The Amazon Resource Name (ARN) of the processing job..

        • CreationTime (datetime) --

          The time at which the processing job was created.

        • ProcessingEndTime (datetime) --

          The time at which the processing job completed.

        • LastModifiedTime (datetime) --

          A timestamp that indicates the last time the processing job was modified.

        • ProcessingJobStatus (string) --

          The status of the processing job.

        • FailureReason (string) --

          A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

        • ExitMessage (string) --

          An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of processing jobs, use it in the subsequent request.

CreateExperiment (new) Link ¶

Creates an Amazon SageMaker experiment . An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components , that produce a machine learning model.

The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.

To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API.

To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.

See also: AWS API Documentation

Request Syntax

client.create_experiment(
    ExperimentName='string',
    DisplayName='string',
    Description='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type ExperimentName

string

param ExperimentName

[REQUIRED]

The name of the experiment. The name must be unique in your AWS account and is not case-sensitive.

type DisplayName

string

param DisplayName

The name of the experiment as displayed. The name doesn't need to be unique. If you don't specify DisplayName , the value in ExperimentName is displayed.

type Description

string

param Description

The description of the experiment.

type Tags

list

param Tags

A list of tags to associate with the experiment. You can use Search API to search on the tags.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'ExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment.

UpdateTrial (new) Link ¶

Updates the display name of a trial.

See also: AWS API Documentation

Request Syntax

client.update_trial(
    TrialName='string',
    DisplayName='string'
)
type TrialName

string

param TrialName

[REQUIRED]

The name of the trial to update.

type DisplayName

string

param DisplayName

The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.

rtype

dict

returns

Response Syntax

{
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

CreateTrialComponent (new) Link ¶

Creates a trial component , which is a stage of a machine learning trial . A trial is composed of one or more trial components. A trial component can be used in multiple trials.

Trial components include pre-processing jobs, training jobs, and batch transform jobs.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial component and then use the Search API to search for the tags.

Note

You can create a trial component through a direct call to the CreateTrialComponent API. However, you can't specify the Source property of the component in the request, therefore, the component isn't associated with an Amazon SageMaker job. You must use Amazon SageMaker Studio, the Amazon SageMaker Python SDK, or the AWS SDK for Python (Boto) to create the component with a valid Source property.

See also: AWS API Documentation

Request Syntax

client.create_trial_component(
    TrialComponentName='string',
    DisplayName='string',
    Status={
        'PrimaryStatus': 'InProgress'|'Completed'|'Failed',
        'Message': 'string'
    },
    StartTime=datetime(2015, 1, 1),
    EndTime=datetime(2015, 1, 1),
    Parameters={
        'string': {
            'StringValue': 'string',
            'NumberValue': 123.0
        }
    },
    InputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    OutputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type TrialComponentName

string

param TrialComponentName

[REQUIRED]

The name of the component. The name must be unique in your AWS account and is not case-sensitive.

type DisplayName

string

param DisplayName

The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.

type Status

dict

param Status

The status of the component. States include:

  • InProgress

  • Completed

  • Failed

  • PrimaryStatus (string) --

    The status of the trial component.

  • Message (string) --

    If the component failed, a message describing why.

type StartTime

datetime

param StartTime

When the component started.

type EndTime

datetime

param EndTime

When the component ended.

type Parameters

dict

param Parameters

The hyperparameters for the component.

  • (string) --

    • (dict) --

      The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

      This object is specified in the CreateTrialComponent request.

      • StringValue (string) --

        The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

      • NumberValue (float) --

        The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

type InputArtifacts

dict

param InputArtifacts

The input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.

  • (string) --

    • (dict) --

      Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

      Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

      • MediaType (string) --

        The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

      • Value (string) -- [REQUIRED]

        The location of the artifact.

type OutputArtifacts

dict

param OutputArtifacts

The output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.

  • (string) --

    • (dict) --

      Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

      Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

      • MediaType (string) --

        The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

      • Value (string) -- [REQUIRED]

        The location of the artifact.

type Tags

list

param Tags

A list of tags to associate with the component. You can use Search API to search on the tags.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'TrialComponentArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

ListDomains (new) Link ¶

Lists the domains.

See also: AWS API Documentation

Request Syntax

client.list_domains(
    NextToken='string',
    MaxResults=123
)
type NextToken

string

param NextToken

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

type MaxResults

integer

param MaxResults

Returns a list up to a specified limit.

rtype

dict

returns

Response Syntax

{
    'Domains': [
        {
            'DomainArn': 'string',
            'DomainId': 'string',
            'DomainName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'Url': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Domains (list) --

      The list of domains.

      • (dict) --

        The domain's details.

        • DomainArn (string) --

          The domain's Amazon Resource Name (ARN).

        • DomainId (string) --

          The domain ID.

        • DomainName (string) --

          The domain name.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

        • Url (string) --

          The domain's URL.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

DescribeAutoMLJob (new) Link ¶

Returns information about an Amazon SageMaker job.

See also: AWS API Documentation

Request Syntax

client.describe_auto_ml_job(
    AutoMLJobName='string'
)
type AutoMLJobName

string

param AutoMLJobName

[REQUIRED]

Request information about a job using that job's unique name.

rtype

dict

returns

Response Syntax

{
    'AutoMLJobName': 'string',
    'AutoMLJobArn': 'string',
    'InputDataConfig': [
        {
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix',
                    'S3Uri': 'string'
                }
            },
            'CompressionType': 'None'|'Gzip',
            'TargetAttributeName': 'string'
        },
    ],
    'OutputDataConfig': {
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    'RoleArn': 'string',
    'AutoMLJobObjective': {
        'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'
    },
    'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression',
    'AutoMLJobConfig': {
        'CompletionCriteria': {
            'MaxCandidates': 123,
            'MaxRuntimePerTrainingJobInSeconds': 123,
            'MaxAutoMLJobRuntimeInSeconds': 123
        },
        'SecurityConfig': {
            'VolumeKmsKeyId': 'string',
            'EnableInterContainerTrafficEncryption': True|False,
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        }
    },
    'CreationTime': datetime(2015, 1, 1),
    'EndTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'BestCandidate': {
        'CandidateName': 'string',
        'FinalAutoMLJobObjectiveMetric': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro',
            'Value': ...
        },
        'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed',
        'CandidateSteps': [
            {
                'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob',
                'CandidateStepArn': 'string',
                'CandidateStepName': 'string'
            },
        ],
        'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
        'InferenceContainers': [
            {
                'Image': 'string',
                'ModelDataUrl': 'string',
                'Environment': {
                    'string': 'string'
                }
            },
        ],
        'CreationTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'LastModifiedTime': datetime(2015, 1, 1),
        'FailureReason': 'string'
    },
    'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated',
    'GenerateCandidateDefinitionsOnly': True|False,
    'AutoMLJobArtifacts': {
        'CandidateDefinitionNotebookLocation': 'string',
        'DataExplorationNotebookLocation': 'string'
    },
    'ResolvedAttributes': {
        'AutoMLJobObjective': {
            'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'
        },
        'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression',
        'CompletionCriteria': {
            'MaxCandidates': 123,
            'MaxRuntimePerTrainingJobInSeconds': 123,
            'MaxAutoMLJobRuntimeInSeconds': 123
        }
    }
}

Response Structure

  • (dict) --

    • AutoMLJobName (string) --

      Returns the name of a job.

    • AutoMLJobArn (string) --

      Returns the job's ARN.

    • InputDataConfig (list) --

      Returns the job's input data config.

      • (dict) --

        Similar to Channel. A channel is a named input source that training algorithms can consume. Refer to Channel for detailed descriptions.

        • DataSource (dict) --

          The data source.

          • S3DataSource (dict) --

            The Amazon S3 location of the data.

            • S3DataType (string) --

              The data type.

            • S3Uri (string) --

              The URL to the Amazon S3 data source.

        • CompressionType (string) --

          You can use Gzip or None. The default value is None.

        • TargetAttributeName (string) --

          The name of the target variable in supervised learning, a.k.a. ‘y’.

    • OutputDataConfig (dict) --

      Returns the job's output data config.

      • KmsKeyId (string) --

        The AWS KMS encryption key ID.

      • S3OutputPath (string) --

        The Amazon S3 output path. Must be 128 characters or less.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.

    • AutoMLJobObjective (dict) --

      Returns the job's objective.

      • MetricName (string) --

        The name of the metric.

    • ProblemType (string) --

      Returns the job's problem type.

    • AutoMLJobConfig (dict) --

      Returns the job's config.

      • CompletionCriteria (dict) --

        How long a job is allowed to run, or how many candidates a job is allowed to generate.

        • MaxCandidates (integer) --

          The maximum number of times a training job is allowed to run.

        • MaxRuntimePerTrainingJobInSeconds (integer) --

          The maximum time, in seconds, a job is allowed to run.

        • MaxAutoMLJobRuntimeInSeconds (integer) --

          The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.

      • SecurityConfig (dict) --

        Security configuration for traffic encryption or Amazon VPC settings.

        • VolumeKmsKeyId (string) --

          The key used to encrypt stored data.

        • EnableInterContainerTrafficEncryption (boolean) --

          Whether to use traffic encryption between the container layers.

        • VpcConfig (dict) --

          VPC configuration.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --

          • Subnets (list) --

            The ID of the subnets in the VPC to which you want to connect your training job or model.

            Note

            Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

            • (string) --

    • CreationTime (datetime) --

      Returns the job's creation time.

    • EndTime (datetime) --

      Returns the job's end time.

    • LastModifiedTime (datetime) --

      Returns the job's last modified time.

    • FailureReason (string) --

      Returns the job's FailureReason.

    • BestCandidate (dict) --

      Returns the job's BestCandidate.

      • CandidateName (string) --

        The candidate name.

      • FinalAutoMLJobObjectiveMetric (dict) --

        The candidate result from a job.

        • Type (string) --

          The metric type used.

        • MetricName (string) --

          The name of the metric.

        • Value (float) --

          The value of the metric.

      • ObjectiveStatus (string) --

        The objective status.

      • CandidateSteps (list) --

        The candidate's steps.

        • (dict) --

          Information about the steps for a Candidate, and what step it is working on.

          • CandidateStepType (string) --

            Whether the Candidate is at the transform, training, or processing step.

          • CandidateStepArn (string) --

            The ARN for the Candidate's step.

          • CandidateStepName (string) --

            The name for the Candidate's step.

      • CandidateStatus (string) --

        The candidate's status.

      • InferenceContainers (list) --

        The inference containers.

        • (dict) --

          A list of container definitions that describe the different containers that make up one AutoML candidate. Refer to ContainerDefinition for more details.

          • Image (string) --

            The ECR path of the container. Refer to ContainerDefinition for more details.

          • ModelDataUrl (string) --

            The location of the model artifacts. Refer to ContainerDefinition for more details.

          • Environment (dict) --

            Environment variables to set in the container. Refer to ContainerDefinition for more details.

            • (string) --

              • (string) --

      • CreationTime (datetime) --

        The creation time.

      • EndTime (datetime) --

        The end time.

      • LastModifiedTime (datetime) --

        The last modified time.

      • FailureReason (string) --

        The failure reason.

    • AutoMLJobStatus (string) --

      Returns the job's AutoMLJobStatus.

    • AutoMLJobSecondaryStatus (string) --

      Returns the job's AutoMLJobSecondaryStatus.

    • GenerateCandidateDefinitionsOnly (boolean) --

      Returns the job's output from GenerateCandidateDefinitionsOnly.

    • AutoMLJobArtifacts (dict) --

      Returns information on the job's artifacts found in AutoMLJobArtifacts.

      • CandidateDefinitionNotebookLocation (string) --

        The URL to the notebook location.

      • DataExplorationNotebookLocation (string) --

        The URL to the notebook location.

    • ResolvedAttributes (dict) --

      This contains ProblemType, AutoMLJobObjective and CompletionCriteria. They’re auto-inferred values, if not provided by you. If you do provide them, then they’ll be the same as provided.

      • AutoMLJobObjective (dict) --

        Applies a metric to minimize or maximize for the job's objective.

        • MetricName (string) --

          The name of the metric.

      • ProblemType (string) --

        The problem type.

      • CompletionCriteria (dict) --

        How long a job is allowed to run, or how many candidates a job is allowed to generate.

        • MaxCandidates (integer) --

          The maximum number of times a training job is allowed to run.

        • MaxRuntimePerTrainingJobInSeconds (integer) --

          The maximum time, in seconds, a job is allowed to run.

        • MaxAutoMLJobRuntimeInSeconds (integer) --

          The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.

ListTrials (new) Link ¶

Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.

See also: AWS API Documentation

Request Syntax

client.list_trials(
    ExperimentName='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
type ExperimentName

string

param ExperimentName

A filter that returns only trials that are part of the specified experiment.

type CreatedAfter

datetime

param CreatedAfter

A filter that returns only trials created after the specified time.

type CreatedBefore

datetime

param CreatedBefore

A filter that returns only trials created before the specified time.

type SortBy

string

param SortBy

The property used to sort results. The default value is CreationTime .

type SortOrder

string

param SortOrder

The sort order. The default value is Descending .

type MaxResults

integer

param MaxResults

The maximum number of trials to return in the response.

type NextToken

string

param NextToken

If the previous call to ListTrials didn't return the full set of trials, the call returns a token for getting the next set of trials.

rtype

dict

returns

Response Syntax

{
    'TrialSummaries': [
        {
            'TrialArn': 'string',
            'TrialName': 'string',
            'DisplayName': 'string',
            'TrialSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrialSummaries (list) --

      A list of the summaries of your trials.

      • (dict) --

        A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial API and provide the TrialName .

        • TrialArn (string) --

          The Amazon Resource Name (ARN) of the trial.

        • TrialName (string) --

          The name of the trial.

        • DisplayName (string) --

          The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

        • TrialSource (dict) --

          The source of the trial.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source job type.

        • CreationTime (datetime) --

          When the trial was created.

        • LastModifiedTime (datetime) --

          When the trial was last modified.

    • NextToken (string) --

      A token for getting the next set of trials, if there are any.

DescribeTrial (new) Link ¶

Provides a list of a trial's properties.

See also: AWS API Documentation

Request Syntax

client.describe_trial(
    TrialName='string'
)
type TrialName

string

param TrialName

[REQUIRED]

The name of the trial to describe.

rtype

dict

returns

Response Syntax

{
    'TrialName': 'string',
    'TrialArn': 'string',
    'DisplayName': 'string',
    'ExperimentName': 'string',
    'Source': {
        'SourceArn': 'string',
        'SourceType': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    }
}

Response Structure

  • (dict) --

    • TrialName (string) --

      The name of the trial.

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

    • DisplayName (string) --

      The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.

    • ExperimentName (string) --

      The name of the experiment the trial is part of.

    • Source (dict) --

      The Amazon Resource Name (ARN) of the source and, optionally, the job type.

      • SourceArn (string) --

        The Amazon Resource Name (ARN) of the source.

      • SourceType (string) --

        The source job type.

    • CreationTime (datetime) --

      When the trial was created.

    • CreatedBy (dict) --

      Who created the trial.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the trial was last modified.

    • LastModifiedBy (dict) --

      Who last modified the trial.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

UpdateDomain (new) Link ¶

Updates a domain. Changes will impact all of the people in the domain.

See also: AWS API Documentation

Request Syntax

client.update_domain(
    DomainId='string',
    DefaultUserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        }
    }
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type DefaultUserSettings

dict

param DefaultUserSettings

A collection of settings.

  • ExecutionRole (string) --

    The execution role for the user.

  • SecurityGroups (list) --

    The security groups.

    • (string) --

  • SharingSettings (dict) --

    The sharing settings.

    • NotebookOutputOption (string) --

      The notebook output option.

    • S3OutputPath (string) --

      The Amazon S3 output path.

    • S3KmsKeyId (string) --

      The AWS Key Management Service encryption key ID.

  • JupyterServerAppSettings (dict) --

    The Jupyter server's app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • KernelGatewayAppSettings (dict) --

    The kernel gateway app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • TensorBoardAppSettings (dict) --

    The TensorBoard app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

rtype

dict

returns

Response Syntax

{
    'DomainArn': 'string'
}

Response Structure

  • (dict) --

    • DomainArn (string) --

      The domain Amazon Resource Name (ARN).

ListUserProfiles (new) Link ¶

Lists user profiles.

See also: AWS API Documentation

Request Syntax

client.list_user_profiles(
    NextToken='string',
    MaxResults=123,
    SortOrder='Ascending'|'Descending',
    SortBy='CreationTime'|'LastModifiedTime',
    DomainIdEquals='string',
    UserProfileNameContains='string'
)
type NextToken

string

param NextToken

If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

type MaxResults

integer

param MaxResults

Returns a list up to a specified limit.

type SortOrder

string

param SortOrder

The sort order for the results. The default is Ascending.

type SortBy

string

param SortBy

The parameter by which to sort the results. The default is CreationTime.

type DomainIdEquals

string

param DomainIdEquals

A parameter by which to filter the results.

type UserProfileNameContains

string

param UserProfileNameContains

A parameter by which to filter the results.

rtype

dict

returns

Response Syntax

{
    'UserProfiles': [
        {
            'DomainId': 'string',
            'UserProfileName': 'string',
            'Status': 'Deleting'|'Failed'|'InService'|'Pending',
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • UserProfiles (list) --

      The list of user profiles.

      • (dict) --

        The user profile details.

        • DomainId (string) --

          The domain ID.

        • UserProfileName (string) --

          The user profile name.

        • Status (string) --

          The status.

        • CreationTime (datetime) --

          The creation time.

        • LastModifiedTime (datetime) --

          The last modified time.

    • NextToken (string) --

      If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

StopAutoMLJob (new) Link ¶

A method for forcing the termination of a running job.

See also: AWS API Documentation

Request Syntax

client.stop_auto_ml_job(
    AutoMLJobName='string'
)
type AutoMLJobName

string

param AutoMLJobName

[REQUIRED]

The name of the object you are requesting.

returns

None

DeleteMonitoringSchedule (new) Link ¶

Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.

See also: AWS API Documentation

Request Syntax

client.delete_monitoring_schedule(
    MonitoringScheduleName='string'
)
type MonitoringScheduleName

string

param MonitoringScheduleName

[REQUIRED]

The name of the monitoring schedule to delete.

returns

None

DeleteExperiment (new) Link ¶

Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.

See also: AWS API Documentation

Request Syntax

client.delete_experiment(
    ExperimentName='string'
)
type ExperimentName

string

param ExperimentName

[REQUIRED]

The name of the experiment to delete.

rtype

dict

returns

Response Syntax

{
    'ExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment that is being deleted.

DeleteTrial (new) Link ¶

Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.

See also: AWS API Documentation

Request Syntax

client.delete_trial(
    TrialName='string'
)
type TrialName

string

param TrialName

[REQUIRED]

The name of the trial to delete.

rtype

dict

returns

Response Syntax

{
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial that is being deleted.

DescribeHumanTaskUi (new) Link ¶

Returns information about the requested human task user interface.

See also: AWS API Documentation

Request Syntax

client.describe_human_task_ui(
    HumanTaskUiName='string'
)
type HumanTaskUiName

string

param HumanTaskUiName

[REQUIRED]

The name of the human task user interface you want information about.

rtype

dict

returns

Response Syntax

{
    'HumanTaskUiArn': 'string',
    'HumanTaskUiName': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'UiTemplate': {
        'Url': 'string',
        'ContentSha256': 'string'
    }
}

Response Structure

  • (dict) --

    • HumanTaskUiArn (string) --

      The Amazon Resource Name (ARN) of the human task user interface.

    • HumanTaskUiName (string) --

      The name of the human task user interface.

    • CreationTime (datetime) --

      The timestamp when the human task user interface was created.

    • UiTemplate (dict) --

      Container for user interface template information.

      • Url (string) --

        The URL for the user interface template.

      • ContentSha256 (string) --

        The SHA 256 hash that you used to create the request signature.

ListTrialComponents (new) Link ¶

Lists the trial components in your account. You can filter the list to show only components that were created in a specific time range. You can sort the list by trial component name or creation time.

See also: AWS API Documentation

Request Syntax

client.list_trial_components(
    SourceArn='string',
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    MaxResults=123,
    NextToken='string'
)
type SourceArn

string

param SourceArn

A filter that returns only components that have the specified source Amazon Resource Name (ARN).

type CreatedAfter

datetime

param CreatedAfter

A filter that returns only components created after the specified time.

type CreatedBefore

datetime

param CreatedBefore

A filter that returns only components created before the specified time.

type SortBy

string

param SortBy

The property used to sort results. The default value is CreationTime .

type SortOrder

string

param SortOrder

The sort order. The default value is Descending .

type MaxResults

integer

param MaxResults

The maximum number of components to return in the response.

type NextToken

string

param NextToken

If the previous call to ListTrialComponents didn't return the full set of components, the call returns a token for getting the next set of components.

rtype

dict

returns

Response Syntax

{
    'TrialComponentSummaries': [
        {
            'TrialComponentName': 'string',
            'TrialComponentArn': 'string',
            'DisplayName': 'string',
            'TrialComponentSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'Status': {
                'PrimaryStatus': 'InProgress'|'Completed'|'Failed',
                'Message': 'string'
            },
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'CreationTime': datetime(2015, 1, 1),
            'CreatedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            },
            'LastModifiedTime': datetime(2015, 1, 1),
            'LastModifiedBy': {
                'UserProfileArn': 'string',
                'UserProfileName': 'string',
                'DomainId': 'string'
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentSummaries (list) --

      A list of the summaries of your trial components.

      • (dict) --

        A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent API and provide the TrialComponentName .

        • TrialComponentName (string) --

          The name of the trial component.

        • TrialComponentArn (string) --

          The ARN of the trial component.

        • DisplayName (string) --

          The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

        • TrialComponentSource (dict) --

          The source of the trial component.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source job type.

        • Status (dict) --

          The status of the component. States include:

          • InProgress

          • Completed

          • Failed

          • PrimaryStatus (string) --

            The status of the trial component.

          • Message (string) --

            If the component failed, a message describing why.

        • StartTime (datetime) --

          When the component started.

        • EndTime (datetime) --

          When the component ended.

        • CreationTime (datetime) --

          When the component was created.

        • CreatedBy (dict) --

          Who created the component.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

        • LastModifiedTime (datetime) --

          When the component was last modified.

        • LastModifiedBy (dict) --

          Who last modified the component.

          • UserProfileArn (string) --

            The Amazon Resource Name (ARN) of the user's profile.

          • UserProfileName (string) --

            The name of the user's profile.

          • DomainId (string) --

            The domain associated with the user.

    • NextToken (string) --

      A token for getting the next set of components, if there are any.

UpdateTrialComponent (new) Link ¶

Updates one or more properties of a trial component.

See also: AWS API Documentation

Request Syntax

client.update_trial_component(
    TrialComponentName='string',
    DisplayName='string',
    Status={
        'PrimaryStatus': 'InProgress'|'Completed'|'Failed',
        'Message': 'string'
    },
    StartTime=datetime(2015, 1, 1),
    EndTime=datetime(2015, 1, 1),
    Parameters={
        'string': {
            'StringValue': 'string',
            'NumberValue': 123.0
        }
    },
    ParametersToRemove=[
        'string',
    ],
    InputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    InputArtifactsToRemove=[
        'string',
    ],
    OutputArtifacts={
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    OutputArtifactsToRemove=[
        'string',
    ]
)
type TrialComponentName

string

param TrialComponentName

[REQUIRED]

The name of the component to update.

type DisplayName

string

param DisplayName

The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.

type Status

dict

param Status

The new status of the component.

  • PrimaryStatus (string) --

    The status of the trial component.

  • Message (string) --

    If the component failed, a message describing why.

type StartTime

datetime

param StartTime

When the component started.

type EndTime

datetime

param EndTime

When the component ended.

type Parameters

dict

param Parameters

Replaces all of the component's hyperparameters with the specified hyperparameters.

  • (string) --

    • (dict) --

      The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

      This object is specified in the CreateTrialComponent request.

      • StringValue (string) --

        The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

      • NumberValue (float) --

        The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

type ParametersToRemove

list

param ParametersToRemove

The hyperparameters to remove from the component.

  • (string) --

type InputArtifacts

dict

param InputArtifacts

Replaces all of the component's input artifacts with the specified artifacts.

  • (string) --

    • (dict) --

      Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

      Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

      • MediaType (string) --

        The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

      • Value (string) -- [REQUIRED]

        The location of the artifact.

type InputArtifactsToRemove

list

param InputArtifactsToRemove

The input artifacts to remove from the component.

  • (string) --

type OutputArtifacts

dict

param OutputArtifacts

Replaces all of the component's output artifacts with the specified artifacts.

  • (string) --

    • (dict) --

      Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

      Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

      • MediaType (string) --

        The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

      • Value (string) -- [REQUIRED]

        The location of the artifact.

type OutputArtifactsToRemove

list

param OutputArtifactsToRemove

The output artifacts to remove from the component.

  • (string) --

rtype

dict

returns

Response Syntax

{
    'TrialComponentArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

StopProcessingJob (new) Link ¶

Stops a processing job.

See also: AWS API Documentation

Request Syntax

client.stop_processing_job(
    ProcessingJobName='string'
)
type ProcessingJobName

string

param ProcessingJobName

[REQUIRED]

The name of the processing job to stop.

returns

None

DescribeTrialComponent (new) Link ¶

Provides a list of a trials component's properties.

See also: AWS API Documentation

Request Syntax

client.describe_trial_component(
    TrialComponentName='string'
)
type TrialComponentName

string

param TrialComponentName

[REQUIRED]

The name of the trial component to describe.

rtype

dict

returns

Response Syntax

{
    'TrialComponentName': 'string',
    'TrialComponentArn': 'string',
    'DisplayName': 'string',
    'Source': {
        'SourceArn': 'string',
        'SourceType': 'string'
    },
    'Status': {
        'PrimaryStatus': 'InProgress'|'Completed'|'Failed',
        'Message': 'string'
    },
    'StartTime': datetime(2015, 1, 1),
    'EndTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'Parameters': {
        'string': {
            'StringValue': 'string',
            'NumberValue': 123.0
        }
    },
    'InputArtifacts': {
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    'OutputArtifacts': {
        'string': {
            'MediaType': 'string',
            'Value': 'string'
        }
    },
    'Metrics': [
        {
            'MetricName': 'string',
            'SourceArn': 'string',
            'TimeStamp': datetime(2015, 1, 1),
            'Max': 123.0,
            'Min': 123.0,
            'Last': 123.0,
            'Count': 123,
            'Avg': 123.0,
            'StdDev': 123.0
        },
    ]
}

Response Structure

  • (dict) --

    • TrialComponentName (string) --

      The name of the trial component.

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the trial component.

    • DisplayName (string) --

      The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.

    • Source (dict) --

      The Amazon Resource Name (ARN) of the source and, optionally, the job type.

      • SourceArn (string) --

        The Amazon Resource Name (ARN) of the source.

      • SourceType (string) --

        The source job type.

    • Status (dict) --

      The status of the component. States include:

      • InProgress

      • Completed

      • Failed

      • PrimaryStatus (string) --

        The status of the trial component.

      • Message (string) --

        If the component failed, a message describing why.

    • StartTime (datetime) --

      When the component started.

    • EndTime (datetime) --

      When the component ended.

    • CreationTime (datetime) --

      When the component was created.

    • CreatedBy (dict) --

      Who created the component.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the component was last modified.

    • LastModifiedBy (dict) --

      Who last modified the component.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • Parameters (dict) --

      The hyperparameters of the component.

      • (string) --

        • (dict) --

          The value of a hyperparameter. Only one of NumberValue or StringValue can be specified.

          This object is specified in the CreateTrialComponent request.

          • StringValue (string) --

            The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.

          • NumberValue (float) --

            The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.

    • InputArtifacts (dict) --

      The input artifacts of the component.

      • (string) --

        • (dict) --

          Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

          Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

          • MediaType (string) --

            The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

          • Value (string) --

            The location of the artifact.

    • OutputArtifacts (dict) --

      The output artifacts of the component.

      • (string) --

        • (dict) --

          Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request.

          Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

          • MediaType (string) --

            The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.

          • Value (string) --

            The location of the artifact.

    • Metrics (list) --

      The metrics for the component.

      • (dict) --

        A summary of the metrics of a trial component.

        • MetricName (string) --

          The name of the metric.

        • SourceArn (string) --

          The Amazon Resource Name (ARN) of the source.

        • TimeStamp (datetime) --

          When the metric was last updated.

        • Max (float) --

          The maximum value of the metric.

        • Min (float) --

          The minimum value of the metric.

        • Last (float) --

          The most recent value of the metric.

        • Count (integer) --

          The number of samples used to generate the metric.

        • Avg (float) --

          The average value of the metric.

        • StdDev (float) --

          The standard deviation of the metric.

DescribeDomain (new) Link ¶

The desciption of the domain.

See also: AWS API Documentation

Request Syntax

client.describe_domain(
    DomainId='string'
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

rtype

dict

returns

Response Syntax

{
    'DomainArn': 'string',
    'DomainId': 'string',
    'DomainName': 'string',
    'HomeEfsFileSystemId': 'string',
    'SingleSignOnManagedApplicationInstanceId': 'string',
    'Status': 'Deleting'|'Failed'|'InService'|'Pending',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'AuthMode': 'SSO'|'IAM',
    'DefaultUserSettings': {
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        }
    },
    'HomeEfsFileSystemKmsKeyId': 'string',
    'SubnetIds': [
        'string',
    ],
    'Url': 'string',
    'VpcId': 'string'
}

Response Structure

  • (dict) --

    • DomainArn (string) --

      The domain's Amazon Resource Name (ARN).

    • DomainId (string) --

      The domain ID.

    • DomainName (string) --

      The domain name.

    • HomeEfsFileSystemId (string) --

      The ID of the Amazon Elastic File System (EFS) managed by this Domain.

    • SingleSignOnManagedApplicationInstanceId (string) --

      The SSO managed application instance ID.

    • Status (string) --

      The status.

    • CreationTime (datetime) --

      The creation time.

    • LastModifiedTime (datetime) --

      The last modified time.

    • FailureReason (string) --

      The failure reason.

    • AuthMode (string) --

      The domain's authentication mode.

    • DefaultUserSettings (dict) --

      Settings which are applied to all UserProfile in this domain, if settings are not explicitly specified in a given UserProfile.

      • ExecutionRole (string) --

        The execution role for the user.

      • SecurityGroups (list) --

        The security groups.

        • (string) --

      • SharingSettings (dict) --

        The sharing settings.

        • NotebookOutputOption (string) --

          The notebook output option.

        • S3OutputPath (string) --

          The Amazon S3 output path.

        • S3KmsKeyId (string) --

          The AWS Key Management Service encryption key ID.

      • JupyterServerAppSettings (dict) --

        The Jupyter server's app settings.

        • DefaultResourceSpec (dict) --

          The instance type and quantity.

          • EnvironmentArn (string) --

            The Amazon Resource Name (ARN) of the environment.

          • InstanceType (string) --

            The instance type.

      • KernelGatewayAppSettings (dict) --

        The kernel gateway app settings.

        • DefaultResourceSpec (dict) --

          The instance type and quantity.

          • EnvironmentArn (string) --

            The Amazon Resource Name (ARN) of the environment.

          • InstanceType (string) --

            The instance type.

      • TensorBoardAppSettings (dict) --

        The TensorBoard app settings.

        • DefaultResourceSpec (dict) --

          The instance type and quantity.

          • EnvironmentArn (string) --

            The Amazon Resource Name (ARN) of the environment.

          • InstanceType (string) --

            The instance type.

    • HomeEfsFileSystemKmsKeyId (string) --

      The AWS Key Management Service encryption key ID.

    • SubnetIds (list) --

      Security setting to limit to a set of subnets.

      • (string) --

    • Url (string) --

      The domain's URL.

    • VpcId (string) --

      The ID of the Amazon Virtual Private Cloud.

ListMonitoringExecutions (new) Link ¶

Returns list of all monitoring job executions.

See also: AWS API Documentation

Request Syntax

client.list_monitoring_executions(
    MonitoringScheduleName='string',
    EndpointName='string',
    SortBy='CreationTime'|'ScheduledTime'|'Status',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123,
    ScheduledTimeBefore=datetime(2015, 1, 1),
    ScheduledTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    CreationTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    StatusEquals='Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped'
)
type MonitoringScheduleName

string

param MonitoringScheduleName

Name of a specific schedule to fetch jobs for.

type EndpointName

string

param EndpointName

Name of a specific endpoint to fetch jobs for.

type SortBy

string

param SortBy

Whether to sort results by Status , CreationTime , ScheduledTime field. The default is CreationTime .

type SortOrder

string

param SortOrder

Whether to sort the results in Ascending or Descending order. The default is Descending .

type NextToken

string

param NextToken

The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

type MaxResults

integer

param MaxResults

The maximum number of jobs to return in the response. The default value is 10.

type ScheduledTimeBefore

datetime

param ScheduledTimeBefore

Filter for jobs scheduled before a specified time.

type ScheduledTimeAfter

datetime

param ScheduledTimeAfter

Filter for jobs scheduled after a specified time.

type CreationTimeBefore

datetime

param CreationTimeBefore

A filter that returns only jobs created before a specified time.

type CreationTimeAfter

datetime

param CreationTimeAfter

A filter that returns only jobs created after a specified time.

type LastModifiedTimeBefore

datetime

param LastModifiedTimeBefore

A filter that returns only jobs modified after a specified time.

type LastModifiedTimeAfter

datetime

param LastModifiedTimeAfter

A filter that returns only jobs modified before a specified time.

type StatusEquals

string

param StatusEquals

A filter that retrieves only jobs with a specific status.

rtype

dict

returns

Response Syntax

{
    'MonitoringExecutionSummaries': [
        {
            'MonitoringScheduleName': 'string',
            'ScheduledTime': datetime(2015, 1, 1),
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1),
            'MonitoringExecutionStatus': 'Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
            'ProcessingJobArn': 'string',
            'EndpointName': 'string',
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • MonitoringExecutionSummaries (list) --

      A JSON array in which each element is a summary for a monitoring execution.

      • (dict) --

        Summary of information about the last monitoring job to run.

        • MonitoringScheduleName (string) --

          The name of the monitoring schedule.

        • ScheduledTime (datetime) --

          The time the monitoring job was scheduled.

        • CreationTime (datetime) --

          The time at which the monitoring job was created.

        • LastModifiedTime (datetime) --

          A timestamp that indicates the last time the monitoring job was modified.

        • MonitoringExecutionStatus (string) --

          The status of the monitoring job.

        • ProcessingJobArn (string) --

          The Amazon Resource Name (ARN) of the monitoring job.

        • EndpointName (string) --

          The name of teh endpoint used to run the monitoring job.

        • FailureReason (string) --

          Contains the reason a monitoring job failed, if it failed.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques

UpdateMonitoringSchedule (new) Link ¶

Updates a previously created schedule.

See also: AWS API Documentation

Request Syntax

client.update_monitoring_schedule(
    MonitoringScheduleName='string',
    MonitoringScheduleConfig={
        'ScheduleConfig': {
            'ScheduleExpression': 'string'
        },
        'MonitoringJobDefinition': {
            'BaselineConfig': {
                'ConstraintsResource': {
                    'S3Uri': 'string'
                },
                'StatisticsResource': {
                    'S3Uri': 'string'
                }
            },
            'MonitoringInputs': [
                {
                    'EndpointInput': {
                        'EndpointName': 'string',
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key'
                    }
                },
            ],
            'MonitoringOutputConfig': {
                'MonitoringOutputs': [
                    {
                        'S3Output': {
                            'S3Uri': 'string',
                            'LocalPath': 'string',
                            'S3UploadMode': 'Continuous'|'EndOfJob'
                        }
                    },
                ],
                'KmsKeyId': 'string'
            },
            'MonitoringResources': {
                'ClusterConfig': {
                    'InstanceCount': 123,
                    'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
                    'VolumeSizeInGB': 123,
                    'VolumeKmsKeyId': 'string'
                }
            },
            'MonitoringAppSpecification': {
                'ImageUri': 'string',
                'ContainerEntrypoint': [
                    'string',
                ],
                'ContainerArguments': [
                    'string',
                ],
                'RecordPreprocessorSourceUri': 'string',
                'PostAnalyticsProcessorSourceUri': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123
            },
            'Environment': {
                'string': 'string'
            },
            'NetworkConfig': {
                'EnableNetworkIsolation': True|False,
                'VpcConfig': {
                    'SecurityGroupIds': [
                        'string',
                    ],
                    'Subnets': [
                        'string',
                    ]
                }
            },
            'RoleArn': 'string'
        }
    }
)
type MonitoringScheduleName

string

param MonitoringScheduleName

[REQUIRED]

The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.

type MonitoringScheduleConfig

dict

param MonitoringScheduleConfig

[REQUIRED]

The configuration object that specifies the monitoring schedule and defines the monitoring job.

  • ScheduleConfig (dict) --

    Configures the monitoring schedule.

    • ScheduleExpression (string) -- [REQUIRED]

      A cron expression that describes details about the monitoring schedule.

      Currently the only supported cron expressions are:

      • If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *)

      • If you want to start the job daily: cron(0 [00-23] ? * * *)

      For example, the following are valid cron expressions:

      • Daily at noon UTC: cron(0 12 ? * * *)

      • Daily at midnight UTC: cron(0 0 ? * * *)

      To support running every 6, 12 hours, the following are also supported:

      cron(0 [00-23]/[01-24] ? * * *)

      For example, the following are valid cron expressions:

      • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)

      • Every two hours starting at midnight: cron(0 0/2 ? * * *)

      Note

      • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.

      • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.

  • MonitoringJobDefinition (dict) -- [REQUIRED]

    Defines the monitoring job.

    • BaselineConfig (dict) --

      Baseline configuration used to validate that the data conforms to the specified constraints and statistics

      • ConstraintsResource (dict) --

        The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

        • S3Uri (string) --

          The Amazon S3 URI for the constraints resource.

      • StatisticsResource (dict) --

        The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

        • S3Uri (string) --

          The Amazon S3 URI for the statistics resource.

    • MonitoringInputs (list) -- [REQUIRED]

      The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

      • (dict) --

        The inputs for a monitoring job.

        • EndpointInput (dict) -- [REQUIRED]

          The endpoint for a monitoring job.

          • EndpointName (string) -- [REQUIRED]

            An endpoint in customer's account which has enabled DataCaptureConfig enabled.

          • LocalPath (string) -- [REQUIRED]

            Path to the filesystem where the endpoint data is available to the container.

          • S3InputMode (string) --

            Whether the Pipe or File is used as the input mode for transfering data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

          • S3DataDistributionType (string) --

            Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defauts to FullyReplicated

    • MonitoringOutputConfig (dict) -- [REQUIRED]

      The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

      • MonitoringOutputs (list) -- [REQUIRED]

        Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

        • (dict) --

          The output object for a monitoring job.

          • S3Output (dict) -- [REQUIRED]

            The Amazon S3 storage location where the results of a monitoring job are saved.

            • S3Uri (string) -- [REQUIRED]

              A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

            • LocalPath (string) -- [REQUIRED]

              The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

            • S3UploadMode (string) --

              Whether to upload the results of the monitoring job continuously or after the job completes.

      • KmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

    • MonitoringResources (dict) -- [REQUIRED]

      Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

      • ClusterConfig (dict) -- [REQUIRED]

        The configuration for the cluster resources used to run the processing job.

        • InstanceCount (integer) -- [REQUIRED]

          The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) -- [REQUIRED]

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) -- [REQUIRED]

          The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

    • MonitoringAppSpecification (dict) -- [REQUIRED]

      Configures the monitoring job to run a specified Docker container image.

      • ImageUri (string) -- [REQUIRED]

        The container image to be run by the monitoring job.

      • ContainerEntrypoint (list) --

        Specifies the entrypoint for a container used to run the monitoring job.

        • (string) --

      • ContainerArguments (list) --

        An array of arguments for the container used to run the monitoring job.

        • (string) --

      • RecordPreprocessorSourceUri (string) --

        An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

      • PostAnalyticsProcessorSourceUri (string) --

        An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

    • StoppingCondition (dict) --

      Specifies a time limit for how long the monitoring job is allowed to run.

      • MaxRuntimeInSeconds (integer) -- [REQUIRED]

        The maximum runtime allowed in seconds.

    • Environment (dict) --

      Sets the environment variables in the Docker container.

      • (string) --

        • (string) --

    • NetworkConfig (dict) --

      Specifies networking options for an monitoring job.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) -- [REQUIRED]

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --

        • Subnets (list) -- [REQUIRED]

          The ID of the subnets in the VPC to which you want to connect your training job or model.

          Note

          Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

          • (string) --

    • RoleArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

rtype

dict

returns

Response Syntax

{
    'MonitoringScheduleArn': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

UpdateExperiment (new) Link ¶

Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.

See also: AWS API Documentation

Request Syntax

client.update_experiment(
    ExperimentName='string',
    DisplayName='string',
    Description='string'
)
type ExperimentName

string

param ExperimentName

[REQUIRED]

The name of the experiment to update.

type DisplayName

string

param DisplayName

The name of the experiment as displayed. The name doesn't need to be unique. If DisplayName isn't specified, ExperimentName is displayed.

type Description

string

param Description

The description of the experiment.

rtype

dict

returns

Response Syntax

{
    'ExperimentArn': 'string'
}

Response Structure

  • (dict) --

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment.

DescribeApp (new) Link ¶

Describes the app.

See also: AWS API Documentation

Request Syntax

client.describe_app(
    DomainId='string',
    UserProfileName='string',
    AppType='JupyterServer'|'KernelGateway'|'TensorBoard',
    AppName='string'
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The user profile name.

type AppType

string

param AppType

[REQUIRED]

The type of app.

type AppName

string

param AppName

[REQUIRED]

The name of the app.

rtype

dict

returns

Response Syntax

{
    'AppArn': 'string',
    'AppType': 'JupyterServer'|'KernelGateway'|'TensorBoard',
    'AppName': 'string',
    'DomainId': 'string',
    'UserProfileName': 'string',
    'Status': 'Deleted'|'Deleting'|'Failed'|'InService'|'Pending',
    'LastHealthCheckTimestamp': datetime(2015, 1, 1),
    'LastUserActivityTimestamp': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'ResourceSpec': {
        'EnvironmentArn': 'string',
        'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
    }
}

Response Structure

  • (dict) --

    • AppArn (string) --

      The app's Amazon Resource Name (ARN).

    • AppType (string) --

      The type of app.

    • AppName (string) --

      The name of the app.

    • DomainId (string) --

      The domain ID.

    • UserProfileName (string) --

      The user profile name.

    • Status (string) --

      The status.

    • LastHealthCheckTimestamp (datetime) --

      The timestamp of the last health check.

    • LastUserActivityTimestamp (datetime) --

      The timestamp of the last user's activity.

    • CreationTime (datetime) --

      The creation time.

    • FailureReason (string) --

      The failure reason.

    • ResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

DeleteTrialComponent (new) Link ¶

Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

See also: AWS API Documentation

Request Syntax

client.delete_trial_component(
    TrialComponentName='string'
)
type TrialComponentName

string

param TrialComponentName

[REQUIRED]

The name of the component to delete.

rtype

dict

returns

Response Syntax

{
    'TrialComponentArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The Amazon Resource Name (ARN) of the component is being deleted.

StopMonitoringSchedule (new) Link ¶

Stops a previously started monitoring schedule.

See also: AWS API Documentation

Request Syntax

client.stop_monitoring_schedule(
    MonitoringScheduleName='string'
)
type MonitoringScheduleName

string

param MonitoringScheduleName

[REQUIRED]

The name of the schedule to stop.

returns

None

DescribeProcessingJob (new) Link ¶

Returns a description of a processing job.

See also: AWS API Documentation

Request Syntax

client.describe_processing_job(
    ProcessingJobName='string'
)
type ProcessingJobName

string

param ProcessingJobName

[REQUIRED]

The name of the processing job. The name must be unique within an AWS Region in the AWS account.

rtype

dict

returns

Response Syntax

{
    'ProcessingInputs': [
        {
            'InputName': 'string',
            'S3Input': {
                'S3Uri': 'string',
                'LocalPath': 'string',
                'S3DataType': 'ManifestFile'|'S3Prefix',
                'S3InputMode': 'Pipe'|'File',
                'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                'S3CompressionType': 'None'|'Gzip'
            }
        },
    ],
    'ProcessingOutputConfig': {
        'Outputs': [
            {
                'OutputName': 'string',
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    'ProcessingJobName': 'string',
    'ProcessingResources': {
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123
    },
    'AppSpecification': {
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ]
    },
    'Environment': {
        'string': 'string'
    },
    'NetworkConfig': {
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    'RoleArn': 'string',
    'ExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string'
    },
    'ProcessingJobArn': 'string',
    'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'ExitMessage': 'string',
    'FailureReason': 'string',
    'ProcessingEndTime': datetime(2015, 1, 1),
    'ProcessingStartTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'CreationTime': datetime(2015, 1, 1),
    'MonitoringScheduleArn': 'string',
    'AutoMLJobArn': 'string',
    'TrainingJobArn': 'string'
}

Response Structure

  • (dict) --

    • ProcessingInputs (list) --

      The inputs for a processing job.

      • (dict) --

        The inputs for a processing job.

        • InputName (string) --

          The name of the inputs for the processing job.

        • S3Input (dict) --

          The S3 inputs for the processing job.

          • S3Uri (string) --

            The URI for the Amazon S3 storage where you want Amazon SageMaker to download the artifacts needed to run a processing job.

          • LocalPath (string) --

            The local path to the Amazon S3 bucket where you want Amazon SageMaker to download the inputs to run a processing job. LocalPath is an absolute path to the input data.

          • S3DataType (string) --

            Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.

          • S3InputMode (string) --

            Wether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

          • S3DataDistributionType (string) --

            Whether the data stored in Amazon S3 is FullyReplicated or ShardedByS3Key .

          • S3CompressionType (string) --

            Whether to use Gzip compresion for Amazon S3 storage.

    • ProcessingOutputConfig (dict) --

      Output configuration for the processing job.

      • Outputs (list) --

        Output configuration information for a processing job.

        • (dict) --

          Describes the results of a processing job.

          • OutputName (string) --

            The name for the processing job output.

          • S3Output (dict) --

            Configuration for processing job outputs in Amazon S3.

            • S3Uri (string) --

              A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.

            • LocalPath (string) --

              The local path to the Amazon S3 bucket where you want Amazon SageMaker to save the results of an processing job. LocalPath is an absolute path to the input data.

            • S3UploadMode (string) --

              Whether to upload the results of the processing job continuously or after the job completes.

      • KmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.

    • ProcessingJobName (string) --

      The name of the processing job. The name must be unique within an AWS Region in the AWS account.

    • ProcessingResources (dict) --

      Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

      • ClusterConfig (dict) --

        The configuration for the resources in a cluster used to run the processing job.

        • InstanceCount (integer) --

          The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) --

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.

    • StoppingCondition (dict) --

      The time limit for how long the processing job is allowed to run.

      • MaxRuntimeInSeconds (integer) --

        Specifies the maximum runtime in seconds.

    • AppSpecification (dict) --

      Configures the processing job to run a specified container image.

      • ImageUri (string) --

        The container image to be run by the processing job.

      • ContainerEntrypoint (list) --

        The entrypoint for a container used to run a processing job.

        • (string) --

      • ContainerArguments (list) --

        The arguments for a container used to run a processing job.

        • (string) --

    • Environment (dict) --

      The environment variables set in the Docker container.

      • (string) --

        • (string) --

    • NetworkConfig (dict) --

      Networking options for a processing job.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --

        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model.

          Note

          Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

          • (string) --

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • ExperimentConfig (dict) --

      The configuration information used to create an experiment.

      • ExperimentName (string) --

        The name of the experiment.

      • TrialName (string) --

        The name of the trial.

      • TrialComponentDisplayName (string) --

        Display name for the trial component.

    • ProcessingJobArn (string) --

      The Amazon Resource Name (ARN) of the processing job.

    • ProcessingJobStatus (string) --

      Provides the status of a processing job.

    • ExitMessage (string) --

      An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.

    • FailureReason (string) --

      A string, up to one KB in size, that contains the reason a processing job failed, if it failed.

    • ProcessingEndTime (datetime) --

      The time at which the processing job completed.

    • ProcessingStartTime (datetime) --

      The time at which the processing job started.

    • LastModifiedTime (datetime) --

      The time at which the processing job was last modified.

    • CreationTime (datetime) --

      The time at which the processing job was created.

    • MonitoringScheduleArn (string) --

      The ARN of a monitoring schedule for an endpoint associated with this processing job.

    • AutoMLJobArn (string) --

      The ARN of an AutoML job associated with this processing job.

    • TrainingJobArn (string) --

      The ARN of a training job associated with this processing job.

DisassociateTrialComponent (new) Link ¶

Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API.

See also: AWS API Documentation

Request Syntax

client.disassociate_trial_component(
    TrialComponentName='string',
    TrialName='string'
)
type TrialComponentName

string

param TrialComponentName

[REQUIRED]

The name of the component to disassociate from the trial.

type TrialName

string

param TrialName

[REQUIRED]

The name of the trial to disassociate from.

rtype

dict

returns

Response Syntax

{
    'TrialComponentArn': 'string',
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The ARN of the trial component.

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

CreateTrial (new) Link ¶

Creates an Amazon SageMaker trial . A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment .

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial and then use the Search API to search for the tags.

To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.

See also: AWS API Documentation

Request Syntax

client.create_trial(
    TrialName='string',
    DisplayName='string',
    ExperimentName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type TrialName

string

param TrialName

[REQUIRED]

The name of the trial. The name must be unique in your AWS account and is not case-sensitive.

type DisplayName

string

param DisplayName

The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.

type ExperimentName

string

param ExperimentName

[REQUIRED]

The name of the experiment to associate the trial with.

type Tags

list

param Tags

A list of tags to associate with the trial. You can use Search API to search on the tags.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

CreatePresignedDomainUrl (new) Link ¶

Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Amazon SageMaker Studio (Studio), and granted access to all of the Apps and files associated with that Amazon Elastic File System (EFS). This operation can only be called when AuthMode equals IAM.

See also: AWS API Documentation

Request Syntax

client.create_presigned_domain_url(
    DomainId='string',
    UserProfileName='string',
    SessionExpirationDurationInSeconds=123
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The name of the UserProfile to sign-in as.

type SessionExpirationDurationInSeconds

integer

param SessionExpirationDurationInSeconds

The session expiration duration in seconds.

rtype

dict

returns

Response Syntax

{
    'AuthorizedUrl': 'string'
}

Response Structure

  • (dict) --

    • AuthorizedUrl (string) --

      The presigned URL.

CreateMonitoringSchedule (new) Link ¶

Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.

See also: AWS API Documentation

Request Syntax

client.create_monitoring_schedule(
    MonitoringScheduleName='string',
    MonitoringScheduleConfig={
        'ScheduleConfig': {
            'ScheduleExpression': 'string'
        },
        'MonitoringJobDefinition': {
            'BaselineConfig': {
                'ConstraintsResource': {
                    'S3Uri': 'string'
                },
                'StatisticsResource': {
                    'S3Uri': 'string'
                }
            },
            'MonitoringInputs': [
                {
                    'EndpointInput': {
                        'EndpointName': 'string',
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key'
                    }
                },
            ],
            'MonitoringOutputConfig': {
                'MonitoringOutputs': [
                    {
                        'S3Output': {
                            'S3Uri': 'string',
                            'LocalPath': 'string',
                            'S3UploadMode': 'Continuous'|'EndOfJob'
                        }
                    },
                ],
                'KmsKeyId': 'string'
            },
            'MonitoringResources': {
                'ClusterConfig': {
                    'InstanceCount': 123,
                    'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
                    'VolumeSizeInGB': 123,
                    'VolumeKmsKeyId': 'string'
                }
            },
            'MonitoringAppSpecification': {
                'ImageUri': 'string',
                'ContainerEntrypoint': [
                    'string',
                ],
                'ContainerArguments': [
                    'string',
                ],
                'RecordPreprocessorSourceUri': 'string',
                'PostAnalyticsProcessorSourceUri': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123
            },
            'Environment': {
                'string': 'string'
            },
            'NetworkConfig': {
                'EnableNetworkIsolation': True|False,
                'VpcConfig': {
                    'SecurityGroupIds': [
                        'string',
                    ],
                    'Subnets': [
                        'string',
                    ]
                }
            },
            'RoleArn': 'string'
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type MonitoringScheduleName

string

param MonitoringScheduleName

[REQUIRED]

The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.

type MonitoringScheduleConfig

dict

param MonitoringScheduleConfig

[REQUIRED]

The configuration object that specifies the monitoring schedule and defines the monitoring job.

  • ScheduleConfig (dict) --

    Configures the monitoring schedule.

    • ScheduleExpression (string) -- [REQUIRED]

      A cron expression that describes details about the monitoring schedule.

      Currently the only supported cron expressions are:

      • If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *)

      • If you want to start the job daily: cron(0 [00-23] ? * * *)

      For example, the following are valid cron expressions:

      • Daily at noon UTC: cron(0 12 ? * * *)

      • Daily at midnight UTC: cron(0 0 ? * * *)

      To support running every 6, 12 hours, the following are also supported:

      cron(0 [00-23]/[01-24] ? * * *)

      For example, the following are valid cron expressions:

      • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)

      • Every two hours starting at midnight: cron(0 0/2 ? * * *)

      Note

      • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.

      • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.

  • MonitoringJobDefinition (dict) -- [REQUIRED]

    Defines the monitoring job.

    • BaselineConfig (dict) --

      Baseline configuration used to validate that the data conforms to the specified constraints and statistics

      • ConstraintsResource (dict) --

        The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

        • S3Uri (string) --

          The Amazon S3 URI for the constraints resource.

      • StatisticsResource (dict) --

        The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

        • S3Uri (string) --

          The Amazon S3 URI for the statistics resource.

    • MonitoringInputs (list) -- [REQUIRED]

      The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

      • (dict) --

        The inputs for a monitoring job.

        • EndpointInput (dict) -- [REQUIRED]

          The endpoint for a monitoring job.

          • EndpointName (string) -- [REQUIRED]

            An endpoint in customer's account which has enabled DataCaptureConfig enabled.

          • LocalPath (string) -- [REQUIRED]

            Path to the filesystem where the endpoint data is available to the container.

          • S3InputMode (string) --

            Whether the Pipe or File is used as the input mode for transfering data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

          • S3DataDistributionType (string) --

            Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defauts to FullyReplicated

    • MonitoringOutputConfig (dict) -- [REQUIRED]

      The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

      • MonitoringOutputs (list) -- [REQUIRED]

        Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

        • (dict) --

          The output object for a monitoring job.

          • S3Output (dict) -- [REQUIRED]

            The Amazon S3 storage location where the results of a monitoring job are saved.

            • S3Uri (string) -- [REQUIRED]

              A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

            • LocalPath (string) -- [REQUIRED]

              The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

            • S3UploadMode (string) --

              Whether to upload the results of the monitoring job continuously or after the job completes.

      • KmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

    • MonitoringResources (dict) -- [REQUIRED]

      Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

      • ClusterConfig (dict) -- [REQUIRED]

        The configuration for the cluster resources used to run the processing job.

        • InstanceCount (integer) -- [REQUIRED]

          The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

        • InstanceType (string) -- [REQUIRED]

          The ML compute instance type for the processing job.

        • VolumeSizeInGB (integer) -- [REQUIRED]

          The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

        • VolumeKmsKeyId (string) --

          The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

    • MonitoringAppSpecification (dict) -- [REQUIRED]

      Configures the monitoring job to run a specified Docker container image.

      • ImageUri (string) -- [REQUIRED]

        The container image to be run by the monitoring job.

      • ContainerEntrypoint (list) --

        Specifies the entrypoint for a container used to run the monitoring job.

        • (string) --

      • ContainerArguments (list) --

        An array of arguments for the container used to run the monitoring job.

        • (string) --

      • RecordPreprocessorSourceUri (string) --

        An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

      • PostAnalyticsProcessorSourceUri (string) --

        An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

    • StoppingCondition (dict) --

      Specifies a time limit for how long the monitoring job is allowed to run.

      • MaxRuntimeInSeconds (integer) -- [REQUIRED]

        The maximum runtime allowed in seconds.

    • Environment (dict) --

      Sets the environment variables in the Docker container.

      • (string) --

        • (string) --

    • NetworkConfig (dict) --

      Specifies networking options for an monitoring job.

      • EnableNetworkIsolation (boolean) --

        Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

      • VpcConfig (dict) --

        Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) -- [REQUIRED]

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --

        • Subnets (list) -- [REQUIRED]

          The ID of the subnets in the VPC to which you want to connect your training job or model.

          Note

          Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

          • (string) --

    • RoleArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

type Tags

list

param Tags

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'MonitoringScheduleArn': 'string'
}

Response Structure

  • (dict) --

    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

CreateProcessingJob (new) Link ¶

Creates a processing job.

See also: AWS API Documentation

Request Syntax

client.create_processing_job(
    ProcessingInputs=[
        {
            'InputName': 'string',
            'S3Input': {
                'S3Uri': 'string',
                'LocalPath': 'string',
                'S3DataType': 'ManifestFile'|'S3Prefix',
                'S3InputMode': 'Pipe'|'File',
                'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                'S3CompressionType': 'None'|'Gzip'
            }
        },
    ],
    ProcessingOutputConfig={
        'Outputs': [
            {
                'OutputName': 'string',
                'S3Output': {
                    'S3Uri': 'string',
                    'LocalPath': 'string',
                    'S3UploadMode': 'Continuous'|'EndOfJob'
                }
            },
        ],
        'KmsKeyId': 'string'
    },
    ProcessingJobName='string',
    ProcessingResources={
        'ClusterConfig': {
            'InstanceCount': 123,
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        }
    },
    StoppingCondition={
        'MaxRuntimeInSeconds': 123
    },
    AppSpecification={
        'ImageUri': 'string',
        'ContainerEntrypoint': [
            'string',
        ],
        'ContainerArguments': [
            'string',
        ]
    },
    Environment={
        'string': 'string'
    },
    NetworkConfig={
        'EnableNetworkIsolation': True|False,
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    },
    RoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ExperimentConfig={
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string'
    }
)
type ProcessingInputs

list

param ProcessingInputs

For each input, data is downloaded from S3 into the processing container before the processing job begins running if "S3InputMode" is set to File .

  • (dict) --

    The inputs for a processing job.

    • InputName (string) -- [REQUIRED]

      The name of the inputs for the processing job.

    • S3Input (dict) -- [REQUIRED]

      The S3 inputs for the processing job.

      • S3Uri (string) -- [REQUIRED]

        The URI for the Amazon S3 storage where you want Amazon SageMaker to download the artifacts needed to run a processing job.

      • LocalPath (string) -- [REQUIRED]

        The local path to the Amazon S3 bucket where you want Amazon SageMaker to download the inputs to run a processing job. LocalPath is an absolute path to the input data.

      • S3DataType (string) -- [REQUIRED]

        Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.

      • S3InputMode (string) -- [REQUIRED]

        Wether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

      • S3DataDistributionType (string) --

        Whether the data stored in Amazon S3 is FullyReplicated or ShardedByS3Key .

      • S3CompressionType (string) --

        Whether to use Gzip compresion for Amazon S3 storage.

type ProcessingOutputConfig

dict

param ProcessingOutputConfig

Output configuration for the processing job.

  • Outputs (list) -- [REQUIRED]

    Output configuration information for a processing job.

    • (dict) --

      Describes the results of a processing job.

      • OutputName (string) -- [REQUIRED]

        The name for the processing job output.

      • S3Output (dict) -- [REQUIRED]

        Configuration for processing job outputs in Amazon S3.

        • S3Uri (string) -- [REQUIRED]

          A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.

        • LocalPath (string) -- [REQUIRED]

          The local path to the Amazon S3 bucket where you want Amazon SageMaker to save the results of an processing job. LocalPath is an absolute path to the input data.

        • S3UploadMode (string) -- [REQUIRED]

          Whether to upload the results of the processing job continuously or after the job completes.

  • KmsKeyId (string) --

    The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.

type ProcessingJobName

string

param ProcessingJobName

[REQUIRED]

The name of the processing job. The name must be unique within an AWS Region in the AWS account.

type ProcessingResources

dict

param ProcessingResources

[REQUIRED]

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

  • ClusterConfig (dict) -- [REQUIRED]

    The configuration for the resources in a cluster used to run the processing job.

    • InstanceCount (integer) -- [REQUIRED]

      The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

    • InstanceType (string) -- [REQUIRED]

      The ML compute instance type for the processing job.

    • VolumeSizeInGB (integer) -- [REQUIRED]

      The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.

    • VolumeKmsKeyId (string) --

      The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.

type StoppingCondition

dict

param StoppingCondition

The time limit for how long the processing job is allowed to run.

  • MaxRuntimeInSeconds (integer) -- [REQUIRED]

    Specifies the maximum runtime in seconds.

type AppSpecification

dict

param AppSpecification

[REQUIRED]

Configures the processing job to run a specified Docker container image.

  • ImageUri (string) -- [REQUIRED]

    The container image to be run by the processing job.

  • ContainerEntrypoint (list) --

    The entrypoint for a container used to run a processing job.

    • (string) --

  • ContainerArguments (list) --

    The arguments for a container used to run a processing job.

    • (string) --

type Environment

dict

param Environment

Sets the environment variables in the Docker container.

  • (string) --

    • (string) --

type NetworkConfig

dict

param NetworkConfig

Networking options for a processing job.

  • EnableNetworkIsolation (boolean) --

    Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

  • VpcConfig (dict) --

    Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

    • SecurityGroupIds (list) -- [REQUIRED]

      The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

      • (string) --

    • Subnets (list) -- [REQUIRED]

      The ID of the subnets in the VPC to which you want to connect your training job or model.

      Note

      Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

      • (string) --

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

type Tags

list

param Tags

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type ExperimentConfig

dict

param ExperimentConfig

Configuration for the experiment.

  • ExperimentName (string) --

    The name of the experiment.

  • TrialName (string) --

    The name of the trial.

  • TrialComponentDisplayName (string) --

    Display name for the trial component.

rtype

dict

returns

Response Syntax

{
    'ProcessingJobArn': 'string'
}

Response Structure

  • (dict) --

    • ProcessingJobArn (string) --

      The Amazon Resource Name (ARN) of the processing job.

DescribeExperiment (new) Link ¶

Provides a list of an experiment's properties.

See also: AWS API Documentation

Request Syntax

client.describe_experiment(
    ExperimentName='string'
)
type ExperimentName

string

param ExperimentName

[REQUIRED]

The name of the experiment to describe.

rtype

dict

returns

Response Syntax

{
    'ExperimentName': 'string',
    'ExperimentArn': 'string',
    'DisplayName': 'string',
    'Source': {
        'SourceArn': 'string',
        'SourceType': 'string'
    },
    'Description': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'CreatedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    },
    'LastModifiedTime': datetime(2015, 1, 1),
    'LastModifiedBy': {
        'UserProfileArn': 'string',
        'UserProfileName': 'string',
        'DomainId': 'string'
    }
}

Response Structure

  • (dict) --

    • ExperimentName (string) --

      The name of the experiment.

    • ExperimentArn (string) --

      The Amazon Resource Name (ARN) of the experiment.

    • DisplayName (string) --

      The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

    • Source (dict) --

      The ARN of the source and, optionally, the type.

      • SourceArn (string) --

        The Amazon Resource Name (ARN) of the source.

      • SourceType (string) --

        The source type.

    • Description (string) --

      The description of the experiment.

    • CreationTime (datetime) --

      When the experiment was created.

    • CreatedBy (dict) --

      Who created the experiment.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

    • LastModifiedTime (datetime) --

      When the experiment was last modified.

    • LastModifiedBy (dict) --

      Who last modified the experiment.

      • UserProfileArn (string) --

        The Amazon Resource Name (ARN) of the user's profile.

      • UserProfileName (string) --

        The name of the user's profile.

      • DomainId (string) --

        The domain associated with the user.

AssociateTrialComponent (new) Link ¶

Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

See also: AWS API Documentation

Request Syntax

client.associate_trial_component(
    TrialComponentName='string',
    TrialName='string'
)
type TrialComponentName

string

param TrialComponentName

[REQUIRED]

The name of the component to associated with the trial.

type TrialName

string

param TrialName

[REQUIRED]

The name of the trial to associate with.

rtype

dict

returns

Response Syntax

{
    'TrialComponentArn': 'string',
    'TrialArn': 'string'
}

Response Structure

  • (dict) --

    • TrialComponentArn (string) --

      The ARN of the trial component.

    • TrialArn (string) --

      The Amazon Resource Name (ARN) of the trial.

CreateApp (new) Link ¶

Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Amazon SageMaker Studio (Studio) upon access to the associated Studio Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously. Apps will automatically terminate and be deleted when stopped from within Studio, or when the DeleteApp API is manually called. UserProfiles are limited to 5 concurrently running Apps at a time.

See also: AWS API Documentation

Request Syntax

client.create_app(
    DomainId='string',
    UserProfileName='string',
    AppType='JupyterServer'|'KernelGateway'|'TensorBoard',
    AppName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ResourceSpec={
        'EnvironmentArn': 'string',
        'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
    }
)
type DomainId

string

param DomainId

[REQUIRED]

The domain ID.

type UserProfileName

string

param UserProfileName

[REQUIRED]

The user profile name.

type AppType

string

param AppType

[REQUIRED]

The type of app.

type AppName

string

param AppName

[REQUIRED]

The name of the app.

type Tags

list

param Tags

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type ResourceSpec

dict

param ResourceSpec

The instance type and quantity.

  • EnvironmentArn (string) --

    The Amazon Resource Name (ARN) of the environment.

  • InstanceType (string) --

    The instance type.

rtype

dict

returns

Response Syntax

{
    'AppArn': 'string'
}

Response Structure

  • (dict) --

    • AppArn (string) --

      The app's Amazon Resource Name (ARN).

ListExperiments (new) Link ¶

Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.

See also: AWS API Documentation

Request Syntax

client.list_experiments(
    CreatedAfter=datetime(2015, 1, 1),
    CreatedBefore=datetime(2015, 1, 1),
    SortBy='Name'|'CreationTime',
    SortOrder='Ascending'|'Descending',
    NextToken='string',
    MaxResults=123
)
type CreatedAfter

datetime

param CreatedAfter

A filter that returns only experiments created after the specified time.

type CreatedBefore

datetime

param CreatedBefore

A filter that returns only experiments created before the specified time.

type SortBy

string

param SortBy

The property used to sort results. The default value is CreationTime .

type SortOrder

string

param SortOrder

The sort order. The default value is Descending .

type NextToken

string

param NextToken

If the previous call to ListExperiments didn't return the full set of experiments, the call returns a token for getting the next set of experiments.

type MaxResults

integer

param MaxResults

The maximum number of experiments to return in the response.

rtype

dict

returns

Response Syntax

{
    'ExperimentSummaries': [
        {
            'ExperimentArn': 'string',
            'ExperimentName': 'string',
            'DisplayName': 'string',
            'ExperimentSource': {
                'SourceArn': 'string',
                'SourceType': 'string'
            },
            'CreationTime': datetime(2015, 1, 1),
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ExperimentSummaries (list) --

      A list of the summaries of your experiments.

      • (dict) --

        A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment API and provide the ExperimentName .

        • ExperimentArn (string) --

          The Amazon Resource Name (ARN) of the experiment.

        • ExperimentName (string) --

          The name of the experiment.

        • DisplayName (string) --

          The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.

        • ExperimentSource (dict) --

          The source of the experiment.

          • SourceArn (string) --

            The Amazon Resource Name (ARN) of the source.

          • SourceType (string) --

            The source type.

        • CreationTime (datetime) --

          When the experiment was created.

        • LastModifiedTime (datetime) --

          When the experiment was last modified.

    • NextToken (string) --

      A token for getting the next set of experiments, if there are any.

CreateUserProfile (new) Link ¶

Creates a new user profile. A user profile represents a single user within a Domain, and is the main way to reference a "person" for the purposes of sharing, reporting and other user-oriented features. This entity is created during on-boarding. If an administrator invites a person by email or imports them from SSO, a new UserProfile is automatically created. This entity is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.

See also: AWS API Documentation

Request Syntax

client.create_user_profile(
    DomainId='string',
    UserProfileName='string',
    SingleSignOnUserIdentifier='string',
    SingleSignOnUserValue='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    UserSettings={
        'ExecutionRole': 'string',
        'SecurityGroups': [
            'string',
        ],
        'SharingSettings': {
            'NotebookOutputOption': 'Allowed'|'Disabled',
            'S3OutputPath': 'string',
            'S3KmsKeyId': 'string'
        },
        'JupyterServerAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'KernelGatewayAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        },
        'TensorBoardAppSettings': {
            'DefaultResourceSpec': {
                'EnvironmentArn': 'string',
                'InstanceType': 'system'|'ml.t3.micro'|'ml.t3.small'|'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.8xlarge'|'ml.m5.12xlarge'|'ml.m5.16xlarge'|'ml.m5.24xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.12xlarge'|'ml.c5.18xlarge'|'ml.c5.24xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'
            }
        }
    }
)
type DomainId

string

param DomainId

[REQUIRED]

The ID of the associated Domain.

type UserProfileName

string

param UserProfileName

[REQUIRED]

A name for the UserProfile.

type SingleSignOnUserIdentifier

string

param SingleSignOnUserIdentifier

A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is "UserName". If the Domain's AuthMode is SSO, this field is required. If the Domain's AuthMode is not SSO, this field cannot be specified.

type SingleSignOnUserValue

string

param SingleSignOnUserValue

The username of the associated AWS Single Sign-On User for this UserProfile. If the Domain's AuthMode is SSO, this field is required, and must match a valid username of a user in your directory. If the Domain's AuthMode is not SSO, this field cannot be specified.

type Tags

list

param Tags

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type UserSettings

dict

param UserSettings

A collection of settings.

  • ExecutionRole (string) --

    The execution role for the user.

  • SecurityGroups (list) --

    The security groups.

    • (string) --

  • SharingSettings (dict) --

    The sharing settings.

    • NotebookOutputOption (string) --

      The notebook output option.

    • S3OutputPath (string) --

      The Amazon S3 output path.

    • S3KmsKeyId (string) --

      The AWS Key Management Service encryption key ID.

  • JupyterServerAppSettings (dict) --

    The Jupyter server's app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • KernelGatewayAppSettings (dict) --

    The kernel gateway app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

  • TensorBoardAppSettings (dict) --

    The TensorBoard app settings.

    • DefaultResourceSpec (dict) --

      The instance type and quantity.

      • EnvironmentArn (string) --

        The Amazon Resource Name (ARN) of the environment.

      • InstanceType (string) --

        The instance type.

rtype

dict

returns

Response Syntax

{
    'UserProfileArn': 'string'
}

Response Structure

  • (dict) --

    • UserProfileArn (string) --

      The user profile Amazon Resource Name (ARN).

DeleteFlowDefinition (new) Link ¶

Deletes the specified flow definition.

See also: AWS API Documentation

Request Syntax

client.delete_flow_definition(
    FlowDefinitionName='string'
)
type FlowDefinitionName

string

param FlowDefinitionName

[REQUIRED]

The name of the flow definition you are deleting.

rtype

dict

returns

Response Syntax

{}

Response Structure

  • (dict) --

DescribeMonitoringSchedule (new) Link ¶

Describes the schedule for a monitoring job.

See also: AWS API Documentation

Request Syntax

client.describe_monitoring_schedule(
    MonitoringScheduleName='string'
)
type MonitoringScheduleName

string

param MonitoringScheduleName

[REQUIRED]

Name of a previously created monitoring schedule.

rtype

dict

returns

Response Syntax

{
    'MonitoringScheduleArn': 'string',
    'MonitoringScheduleName': 'string',
    'MonitoringScheduleStatus': 'Pending'|'Failed'|'Scheduled'|'Stopped',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'MonitoringScheduleConfig': {
        'ScheduleConfig': {
            'ScheduleExpression': 'string'
        },
        'MonitoringJobDefinition': {
            'BaselineConfig': {
                'ConstraintsResource': {
                    'S3Uri': 'string'
                },
                'StatisticsResource': {
                    'S3Uri': 'string'
                }
            },
            'MonitoringInputs': [
                {
                    'EndpointInput': {
                        'EndpointName': 'string',
                        'LocalPath': 'string',
                        'S3InputMode': 'Pipe'|'File',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key'
                    }
                },
            ],
            'MonitoringOutputConfig': {
                'MonitoringOutputs': [
                    {
                        'S3Output': {
                            'S3Uri': 'string',
                            'LocalPath': 'string',
                            'S3UploadMode': 'Continuous'|'EndOfJob'
                        }
                    },
                ],
                'KmsKeyId': 'string'
            },
            'MonitoringResources': {
                'ClusterConfig': {
                    'InstanceCount': 123,
                    'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
                    'VolumeSizeInGB': 123,
                    'VolumeKmsKeyId': 'string'
                }
            },
            'MonitoringAppSpecification': {
                'ImageUri': 'string',
                'ContainerEntrypoint': [
                    'string',
                ],
                'ContainerArguments': [
                    'string',
                ],
                'RecordPreprocessorSourceUri': 'string',
                'PostAnalyticsProcessorSourceUri': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123
            },
            'Environment': {
                'string': 'string'
            },
            'NetworkConfig': {
                'EnableNetworkIsolation': True|False,
                'VpcConfig': {
                    'SecurityGroupIds': [
                        'string',
                    ],
                    'Subnets': [
                        'string',
                    ]
                }
            },
            'RoleArn': 'string'
        }
    },
    'EndpointName': 'string',
    'LastMonitoringExecutionSummary': {
        'MonitoringScheduleName': 'string',
        'ScheduledTime': datetime(2015, 1, 1),
        'CreationTime': datetime(2015, 1, 1),
        'LastModifiedTime': datetime(2015, 1, 1),
        'MonitoringExecutionStatus': 'Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped',
        'ProcessingJobArn': 'string',
        'EndpointName': 'string',
        'FailureReason': 'string'
    }
}

Response Structure

  • (dict) --

    • MonitoringScheduleArn (string) --

      The Amazon Resource Name (ARN) of the monitoring schedule.

    • MonitoringScheduleName (string) --

      Name of the monitoring schedule.

    • MonitoringScheduleStatus (string) --

      The status of an monitoring job.

    • FailureReason (string) --

      A string, up to one KB in size, that contains the reason a monitoring job failed, if it failed.

    • CreationTime (datetime) --

      The time at which the monitoring job was created.

    • LastModifiedTime (datetime) --

      The time at which the monitoring job was last modified.

    • MonitoringScheduleConfig (dict) --

      The configuration object that specifies the monitoring schedule and defines the monitoring job.

      • ScheduleConfig (dict) --

        Configures the monitoring schedule.

        • ScheduleExpression (string) --

          A cron expression that describes details about the monitoring schedule.

          Currently the only supported cron expressions are:

          • If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *)

          • If you want to start the job daily: cron(0 [00-23] ? * * *)

          For example, the following are valid cron expressions:

          • Daily at noon UTC: cron(0 12 ? * * *)

          • Daily at midnight UTC: cron(0 0 ? * * *)

          To support running every 6, 12 hours, the following are also supported:

          cron(0 [00-23]/[01-24] ? * * *)

          For example, the following are valid cron expressions:

          • Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)

          • Every two hours starting at midnight: cron(0 0/2 ? * * *)

          Note

          • Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.

          • We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.

      • MonitoringJobDefinition (dict) --

        Defines the monitoring job.

        • BaselineConfig (dict) --

          Baseline configuration used to validate that the data conforms to the specified constraints and statistics

          • ConstraintsResource (dict) --

            The baseline constraint file in Amazon S3 that the current monitoring job should validated against.

            • S3Uri (string) --

              The Amazon S3 URI for the constraints resource.

          • StatisticsResource (dict) --

            The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.

            • S3Uri (string) --

              The Amazon S3 URI for the statistics resource.

        • MonitoringInputs (list) --

          The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.

          • (dict) --

            The inputs for a monitoring job.

            • EndpointInput (dict) --

              The endpoint for a monitoring job.

              • EndpointName (string) --

                An endpoint in customer's account which has enabled DataCaptureConfig enabled.

              • LocalPath (string) --

                Path to the filesystem where the endpoint data is available to the container.

              • S3InputMode (string) --

                Whether the Pipe or File is used as the input mode for transfering data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File .

              • S3DataDistributionType (string) --

                Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defauts to FullyReplicated

        • MonitoringOutputConfig (dict) --

          The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).

          • MonitoringOutputs (list) --

            Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.

            • (dict) --

              The output object for a monitoring job.

              • S3Output (dict) --

                The Amazon S3 storage location where the results of a monitoring job are saved.

                • S3Uri (string) --

                  A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.

                • LocalPath (string) --

                  The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.

                • S3UploadMode (string) --

                  Whether to upload the results of the monitoring job continuously or after the job completes.

          • KmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.

        • MonitoringResources (dict) --

          Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.

          • ClusterConfig (dict) --

            The configuration for the cluster resources used to run the processing job.

            • InstanceCount (integer) --

              The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

            • InstanceType (string) --

              The ML compute instance type for the processing job.

            • VolumeSizeInGB (integer) --

              The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

            • VolumeKmsKeyId (string) --

              The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

        • MonitoringAppSpecification (dict) --

          Configures the monitoring job to run a specified Docker container image.

          • ImageUri (string) --

            The container image to be run by the monitoring job.

          • ContainerEntrypoint (list) --

            Specifies the entrypoint for a container used to run the monitoring job.

            • (string) --

          • ContainerArguments (list) --

            An array of arguments for the container used to run the monitoring job.

            • (string) --

          • RecordPreprocessorSourceUri (string) --

            An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.

          • PostAnalyticsProcessorSourceUri (string) --

            An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.

        • StoppingCondition (dict) --

          Specifies a time limit for how long the monitoring job is allowed to run.

          • MaxRuntimeInSeconds (integer) --

            The maximum runtime allowed in seconds.

        • Environment (dict) --

          Sets the environment variables in the Docker container.

          • (string) --

            • (string) --

        • NetworkConfig (dict) --

          Specifies networking options for an monitoring job.

          • EnableNetworkIsolation (boolean) --

            Whether to allow inbound and outbound network calls to and from the containers used for the processing job.

          • VpcConfig (dict) --

            Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

            • SecurityGroupIds (list) --

              The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

              • (string) --

            • Subnets (list) --

              The ID of the subnets in the VPC to which you want to connect your training job or model.

              Note

              Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

              • (string) --

        • RoleArn (string) --

          The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    • EndpointName (string) --

      The name of the endpoint for the monitoring job.

    • LastMonitoringExecutionSummary (dict) --

      Describes metadata on the last execution to run, if there was one.

      • MonitoringScheduleName (string) --

        The name of the monitoring schedule.

      • ScheduledTime (datetime) --

        The time the monitoring job was scheduled.

      • CreationTime (datetime) --

        The time at which the monitoring job was created.

      • LastModifiedTime (datetime) --

        A timestamp that indicates the last time the monitoring job was modified.

      • MonitoringExecutionStatus (string) --

        The status of the monitoring job.

      • ProcessingJobArn (string) --

        The Amazon Resource Name (ARN) of the monitoring job.

      • EndpointName (string) --

        The name of teh endpoint used to run the monitoring job.

      • FailureReason (string) --

        Contains the reason a monitoring job failed, if it failed.

CreateAlgorithm (updated) Link ¶
Changes (request)
{'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.inf1.24xlarge',
                                                                        'ml.inf1.2xlarge',
                                                                        'ml.inf1.6xlarge',
                                                                        'ml.inf1.xlarge'}}}

Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.

See also: AWS API Documentation

Request Syntax

client.create_algorithm(
    AlgorithmName='string',
    AlgorithmDescription='string',
    TrainingSpecification={
        'TrainingImage': 'string',
        'TrainingImageDigest': 'string',
        'SupportedHyperParameters': [
            {
                'Name': 'string',
                'Description': 'string',
                'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText',
                'Range': {
                    'IntegerParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'ContinuousParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'CategoricalParameterRangeSpecification': {
                        'Values': [
                            'string',
                        ]
                    }
                },
                'IsTunable': True|False,
                'IsRequired': True|False,
                'DefaultValue': 'string'
            },
        ],
        'SupportedTrainingInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
        ],
        'SupportsDistributedTraining': True|False,
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'TrainingChannels': [
            {
                'Name': 'string',
                'Description': 'string',
                'IsRequired': True|False,
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedCompressionTypes': [
                    'None'|'Gzip',
                ],
                'SupportedInputModes': [
                    'Pipe'|'File',
                ]
            },
        ],
        'SupportedTuningJobObjectiveMetrics': [
            {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
        ]
    },
    InferenceSpecification={
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    ValidationSpecification={
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TrainingJobDefinition': {
                    'TrainingInputMode': 'Pipe'|'File',
                    'HyperParameters': {
                        'string': 'string'
                    },
                    'InputDataConfig': [
                        {
                            'ChannelName': 'string',
                            'DataSource': {
                                'S3DataSource': {
                                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                    'S3Uri': 'string',
                                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                                    'AttributeNames': [
                                        'string',
                                    ]
                                },
                                'FileSystemDataSource': {
                                    'FileSystemId': 'string',
                                    'FileSystemAccessMode': 'rw'|'ro',
                                    'FileSystemType': 'EFS'|'FSxLustre',
                                    'DirectoryPath': 'string'
                                }
                            },
                            'ContentType': 'string',
                            'CompressionType': 'None'|'Gzip',
                            'RecordWrapperType': 'None'|'RecordIO',
                            'InputMode': 'Pipe'|'File',
                            'ShuffleConfig': {
                                'Seed': 123
                            }
                        },
                    ],
                    'OutputDataConfig': {
                        'KmsKeyId': 'string',
                        'S3OutputPath': 'string'
                    },
                    'ResourceConfig': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123,
                        'VolumeKmsKeyId': 'string'
                    },
                    'StoppingCondition': {
                        'MaxRuntimeInSeconds': 123,
                        'MaxWaitTimeInSeconds': 123
                    }
                },
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    CertifyForMarketplace=True|False
)
type AlgorithmName

string

param AlgorithmName

[REQUIRED]

The name of the algorithm.

type AlgorithmDescription

string

param AlgorithmDescription

A description of the algorithm.

type TrainingSpecification

dict

param TrainingSpecification

[REQUIRED]

Specifies details about training jobs run by this algorithm, including the following:

  • The Amazon ECR path of the container and the version digest of the algorithm.

  • The hyperparameters that the algorithm supports.

  • The instance types that the algorithm supports for training.

  • Whether the algorithm supports distributed training.

  • The metrics that the algorithm emits to Amazon CloudWatch.

  • Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.

  • The input channels that the algorithm supports for training data. For example, an algorithm might support train , validation , and test channels.

  • TrainingImage (string) -- [REQUIRED]

    The Amazon ECR registry path of the Docker image that contains the training algorithm.

  • TrainingImageDigest (string) --

    An MD5 hash of the training algorithm that identifies the Docker image used for training.

  • SupportedHyperParameters (list) --

    A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

    • (dict) --

      Defines a hyperparameter to be used by an algorithm.

      • Name (string) -- [REQUIRED]

        The name of this hyperparameter. The name must be unique.

      • Description (string) --

        A brief description of the hyperparameter.

      • Type (string) -- [REQUIRED]

        The type of this hyperparameter. The valid types are Integer , Continuous , Categorical , and FreeText .

      • Range (dict) --

        The allowed range for this hyperparameter.

        • IntegerParameterRangeSpecification (dict) --

          A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

          • MinValue (string) -- [REQUIRED]

            The minimum integer value allowed.

          • MaxValue (string) -- [REQUIRED]

            The maximum integer value allowed.

        • ContinuousParameterRangeSpecification (dict) --

          A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

          • MinValue (string) -- [REQUIRED]

            The minimum floating-point value allowed.

          • MaxValue (string) -- [REQUIRED]

            The maximum floating-point value allowed.

        • CategoricalParameterRangeSpecification (dict) --

          A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

          • Values (list) -- [REQUIRED]

            The allowed categories for the hyperparameter.

            • (string) --

      • IsTunable (boolean) --

        Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

      • IsRequired (boolean) --

        Indicates whether this hyperparameter is required.

      • DefaultValue (string) --

        The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

  • SupportedTrainingInstanceTypes (list) -- [REQUIRED]

    A list of the instance types that this algorithm can use for training.

    • (string) --

  • SupportsDistributedTraining (boolean) --

    Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

  • MetricDefinitions (list) --

    A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

    • (dict) --

      Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

      • Name (string) -- [REQUIRED]

        The name of the metric.

      • Regex (string) -- [REQUIRED]

        A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

  • TrainingChannels (list) -- [REQUIRED]

    A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

    • (dict) --

      Defines a named input source, called a channel, to be used by an algorithm.

      • Name (string) -- [REQUIRED]

        The name of the channel.

      • Description (string) --

        A brief description of the channel.

      • IsRequired (boolean) --

        Indicates whether the channel is required by the algorithm.

      • SupportedContentTypes (list) -- [REQUIRED]

        The supported MIME types for the data.

        • (string) --

      • SupportedCompressionTypes (list) --

        The allowed compression types, if data compression is used.

        • (string) --

      • SupportedInputModes (list) -- [REQUIRED]

        The allowed input mode, either FILE or PIPE.

        In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

        In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

        • (string) --

  • SupportedTuningJobObjectiveMetrics (list) --

    A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

    • (dict) --

      Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

      • Type (string) -- [REQUIRED]

        Whether to minimize or maximize the objective metric.

      • MetricName (string) -- [REQUIRED]

        The name of the metric to use for the objective metric.

type InferenceSpecification

dict

param InferenceSpecification

Specifies details about inference jobs that the algorithm runs, including the following:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the algorithm supports for inference.

  • Containers (list) -- [REQUIRED]

    The Amazon ECR registry path of the Docker image that contains the inference code.

    • (dict) --

      Describes the Docker container for the model package.

      • ContainerHostname (string) --

        The DNS host name for the Docker container.

      • Image (string) -- [REQUIRED]

        The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

        If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • ImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • ModelDataUrl (string) --

        The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

      • ProductId (string) --

        The AWS Marketplace product ID of the model package.

  • SupportedTransformInstanceTypes (list) -- [REQUIRED]

    A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

    • (string) --

  • SupportedRealtimeInferenceInstanceTypes (list) -- [REQUIRED]

    A list of the instance types that are used to generate inferences in real-time.

    • (string) --

  • SupportedContentTypes (list) -- [REQUIRED]

    The supported MIME types for the input data.

    • (string) --

  • SupportedResponseMIMETypes (list) -- [REQUIRED]

    The supported MIME types for the output data.

    • (string) --

type ValidationSpecification

dict

param ValidationSpecification

Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.

  • ValidationRole (string) -- [REQUIRED]

    The IAM roles that Amazon SageMaker uses to run the training jobs.

  • ValidationProfiles (list) -- [REQUIRED]

    An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.

    • (dict) --

      Defines a training job and a batch transform job that Amazon SageMaker runs to validate your algorithm.

      The data provided in the validation profile is made available to your buyers on AWS Marketplace.

      • ProfileName (string) -- [REQUIRED]

        The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

      • TrainingJobDefinition (dict) -- [REQUIRED]

        The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs to validate your algorithm.

        • TrainingInputMode (string) -- [REQUIRED]

          The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see Algorithms.

          If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.

        • HyperParameters (dict) --

          The hyperparameters used for the training job.

          • (string) --

            • (string) --

        • InputDataConfig (list) -- [REQUIRED]

          An array of Channel objects, each of which specifies an input source.

          • (dict) --

            A channel is a named input source that training algorithms can consume.

            • ChannelName (string) -- [REQUIRED]

              The name of the channel.

            • DataSource (dict) -- [REQUIRED]

              The location of the channel data.

              • S3DataSource (dict) --

                The S3 location of the data source that is associated with a channel.

                • S3DataType (string) -- [REQUIRED]

                  If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

                  If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

                  If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                • S3Uri (string) -- [REQUIRED]

                  Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                  • A key name prefix might look like this: s3://bucketname/exampleprefix .

                  • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

                • S3DataDistributionType (string) --

                  If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                  If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                  Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                  In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                • AttributeNames (list) --

                  A list of one or more attribute names to use that are found in a specified augmented manifest file.

                  • (string) --

              • FileSystemDataSource (dict) --

                The file system that is associated with a channel.

                • FileSystemId (string) -- [REQUIRED]

                  The file system id.

                • FileSystemAccessMode (string) -- [REQUIRED]

                  The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                • FileSystemType (string) -- [REQUIRED]

                  The file system type.

                • DirectoryPath (string) -- [REQUIRED]

                  The full path to the directory to associate with the channel.

            • ContentType (string) --

              The MIME type of the data.

            • CompressionType (string) --

              If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

            • RecordWrapperType (string) --

              Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

              In File mode, leave this field unset or set it to None.

            • InputMode (string) --

              (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

              To use a model for incremental training, choose File input model.

            • ShuffleConfig (dict) --

              A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

              For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

              • Seed (integer) -- [REQUIRED]

                Determines the shuffling order in ShuffleConfig value.

        • OutputDataConfig (dict) -- [REQUIRED]

          the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

          • KmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

          • S3OutputPath (string) -- [REQUIRED]

            Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

        • ResourceConfig (dict) -- [REQUIRED]

          The resources, including the ML compute instances and ML storage volumes, to use for model training.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use. For distributed training, provide a value greater than 1.

          • VolumeSizeInGB (integer) -- [REQUIRED]

            The size of the ML storage volume that you want to provision.

            ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

            You must specify sufficient ML storage for your scenario.

            Note

            Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

            Note

            Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

            For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

          • VolumeKmsKeyId (string) --

            The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

            Note

            Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

            For a list of instance types that support local instance storage, see Instance Store Volumes.

            For more information about local instance storage encryption, see SSD Instance Store Volumes.

            The VolumeKmsKeyId can be in any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • StoppingCondition (dict) -- [REQUIRED]

          Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

          To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

          • MaxRuntimeInSeconds (integer) --

            The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

          • MaxWaitTimeInSeconds (integer) --

            The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

      • TransformJobDefinition (dict) --

        The TransformJobDefinition object that describes the transform job that Amazon SageMaker runs to validate your algorithm.

        • MaxConcurrentTransforms (integer) --

          The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

        • MaxPayloadInMB (integer) --

          The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

        • BatchStrategy (string) --

          A string that determines the number of records included in a single mini-batch.

          SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

        • Environment (dict) --

          The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

          • (string) --

            • (string) --

        • TransformInput (dict) -- [REQUIRED]

          A description of the input source and the way the transform job consumes it.

          • DataSource (dict) -- [REQUIRED]

            Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

            • S3DataSource (dict) -- [REQUIRED]

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) -- [REQUIRED]

                If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                The following values are compatible: ManifestFile , S3Prefix

                The following value is not compatible: AugmentedManifestFile

              • S3Uri (string) -- [REQUIRED]

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix .

                • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

          • ContentType (string) --

            The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

          • CompressionType (string) --

            If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

          • SplitType (string) --

            The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats.

            When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

            Note

            Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

            For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

        • TransformOutput (dict) -- [REQUIRED]

          Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

          • S3OutputPath (string) -- [REQUIRED]

            The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

            For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

          • Accept (string) --

            The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

          • AssembleWith (string) --

            Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

          • KmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

        • TransformResources (dict) -- [REQUIRED]

          Identifies the ML compute instances for the transform job.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1 .

          • VolumeKmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type CertifyForMarketplace

boolean

param CertifyForMarketplace

Whether to certify the algorithm so that it can be listed in AWS Marketplace.

rtype

dict

returns

Response Syntax

{
    'AlgorithmArn': 'string'
}

Response Structure

  • (dict) --

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the new algorithm.

CreateCompilationJob (updated) Link ¶
Changes (request)
{'OutputConfig': {'TargetDevice': {'ml_inf1'}}}

Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.

In the request body, you provide the following:

  • A name for the compilation job

  • Information about the input model artifacts

  • The output location for the compiled model and the device (target) that the model runs on

  • The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job

You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job.

To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

See also: AWS API Documentation

Request Syntax

client.create_compilation_job(
    CompilationJobName='string',
    RoleArn='string',
    InputConfig={
        'S3Uri': 'string',
        'DataInputConfig': 'string',
        'Framework': 'TENSORFLOW'|'MXNET'|'ONNX'|'PYTORCH'|'XGBOOST'
    },
    OutputConfig={
        'S3OutputLocation': 'string',
        'TargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_inf1'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'rasp3b'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603'
    },
    StoppingCondition={
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    }
)
type CompilationJobName

string

param CompilationJobName

[REQUIRED]

A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account.

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

During model compilation, Amazon SageMaker needs your permission to:

  • Read input data from an S3 bucket

  • Write model artifacts to an S3 bucket

  • Write logs to Amazon CloudWatch Logs

  • Publish metrics to Amazon CloudWatch

You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.

type InputConfig

dict

param InputConfig

[REQUIRED]

Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

  • S3Uri (string) -- [REQUIRED]

    The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

  • DataInputConfig (string) -- [REQUIRED]

    Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

    • TensorFlow : You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

      • Examples for one input:

        • If using the console, {"input":[1,1024,1024,3]}

        • If using the CLI, {\"input\":[1,1024,1024,3]}

      • Examples for two inputs:

        • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

        • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

    • MXNET/ONNX : You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

      • Examples for one input:

        • If using the console, {"data":[1,3,1024,1024]}

        • If using the CLI, {\"data\":[1,3,1024,1024]}

      • Examples for two inputs:

        • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

        • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

    • PyTorch : You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

      • Examples for one input in dictionary format:

        • If using the console, {"input0":[1,3,224,224]}

        • If using the CLI, {\"input0\":[1,3,224,224]}

      • Example for one input in list format: [[1,3,224,224]]

      • Examples for two inputs in dictionary format:

        • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

        • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

      • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

    • XGBOOST : input data name and shape are not needed.

  • Framework (string) -- [REQUIRED]

    Identifies the framework in which the model was trained. For example: TENSORFLOW.

type OutputConfig

dict

param OutputConfig

[REQUIRED]

Provides information about the output location for the compiled model and the target device the model runs on.

  • S3OutputLocation (string) -- [REQUIRED]

    Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

  • TargetDevice (string) -- [REQUIRED]

    Identifies the device that you want to run your model on after it has been compiled. For example: ml_c5.

type StoppingCondition

dict

param StoppingCondition

[REQUIRED]

Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

  • MaxRuntimeInSeconds (integer) --

    The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

  • MaxWaitTimeInSeconds (integer) --

    The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

rtype

dict

returns

Response Syntax

{
    'CompilationJobArn': 'string'
}

Response Structure

  • (dict) --

    • CompilationJobArn (string) --

      If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:

      • CompilationJobArn : The Amazon Resource Name (ARN) of the compiled job.

CreateEndpointConfig (updated) Link ¶
Changes (request)
{'DataCaptureConfig': {'CaptureContentTypeHeader': {'CsvContentTypes': ['string'],
                                                    'JsonContentTypes': ['string']},
                       'CaptureOptions': [{'CaptureMode': 'Input | Output'}],
                       'DestinationS3Uri': 'string',
                       'EnableCapture': 'boolean',
                       'InitialSamplingPercentage': 'integer',
                       'KmsKeyId': 'string'},
 'ProductionVariants': {'InstanceType': {'ml.inf1.24xlarge',
                                         'ml.inf1.2xlarge',
                                         'ml.inf1.6xlarge',
                                         'ml.inf1.xlarge'}}}

Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.

Note

Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production.

In the request, you define one or more ProductionVariant s, each of which identifies a model. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.

See also: AWS API Documentation

Request Syntax

client.create_endpoint_config(
    EndpointConfigName='string',
    ProductionVariants=[
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge'
        },
    ],
    DataCaptureConfig={
        'EnableCapture': True|False,
        'InitialSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'CaptureOptions': [
            {
                'CaptureMode': 'Input'|'Output'
            },
        ],
        'CaptureContentTypeHeader': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    KmsKeyId='string'
)
type EndpointConfigName

string

param EndpointConfigName

[REQUIRED]

The name of the endpoint configuration. You specify this name in a CreateEndpoint request.

type ProductionVariants

list

param ProductionVariants

[REQUIRED]

An list of ProductionVariant objects, one for each model that you want to host at this endpoint.

  • (dict) --

    Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights.

    • VariantName (string) -- [REQUIRED]

      The name of the production variant.

    • ModelName (string) -- [REQUIRED]

      The name of the model that you want to host. This is the name that you specified when creating the model.

    • InitialInstanceCount (integer) -- [REQUIRED]

      Number of instances to launch initially.

    • InstanceType (string) -- [REQUIRED]

      The ML compute instance type.

    • InitialVariantWeight (float) --

      Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

    • AcceleratorType (string) --

      The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

type DataCaptureConfig

dict

param DataCaptureConfig
  • EnableCapture (boolean) --

  • InitialSamplingPercentage (integer) -- [REQUIRED]

  • DestinationS3Uri (string) -- [REQUIRED]

  • KmsKeyId (string) --

  • CaptureOptions (list) -- [REQUIRED]

    • (dict) --

      • CaptureMode (string) -- [REQUIRED]

  • CaptureContentTypeHeader (dict) --

    • CsvContentTypes (list) --

      • (string) --

    • JsonContentTypes (list) --

      • (string) --

type Tags

list

param Tags

A list of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type KmsKeyId

string

param KmsKeyId

The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.

Note

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

rtype

dict

returns

Response Syntax

{
    'EndpointConfigArn': 'string'
}

Response Structure

  • (dict) --

    • EndpointConfigArn (string) --

      The Amazon Resource Name (ARN) of the endpoint configuration.

CreateHyperParameterTuningJob (updated) Link ¶
Changes (request)
{'HyperParameterTuningJobConfig': {'TuningJobCompletionCriteria': {'TargetObjectiveMetricValue': 'float'}},
 'TrainingJobDefinition': {'DefinitionName': 'string',
                           'HyperParameterRanges': {'CategoricalParameterRanges': [{'Name': 'string',
                                                                                    'Values': ['string']}],
                                                    'ContinuousParameterRanges': [{'MaxValue': 'string',
                                                                                   'MinValue': 'string',
                                                                                   'Name': 'string',
                                                                                   'ScalingType': 'Auto '
                                                                                                  '| '
                                                                                                  'Linear '
                                                                                                  '| '
                                                                                                  'Logarithmic '
                                                                                                  '| '
                                                                                                  'ReverseLogarithmic'}],
                                                    'IntegerParameterRanges': [{'MaxValue': 'string',
                                                                                'MinValue': 'string',
                                                                                'Name': 'string',
                                                                                'ScalingType': 'Auto '
                                                                                               '| '
                                                                                               'Linear '
                                                                                               '| '
                                                                                               'Logarithmic '
                                                                                               '| '
                                                                                               'ReverseLogarithmic'}]},
                           'TuningObjective': {'MetricName': 'string',
                                               'Type': 'Maximize | Minimize'}},
 'TrainingJobDefinitions': [{'AlgorithmSpecification': {'AlgorithmName': 'string',
                                                        'MetricDefinitions': [{'Name': 'string',
                                                                               'Regex': 'string'}],
                                                        'TrainingImage': 'string',
                                                        'TrainingInputMode': 'Pipe '
                                                                             '| '
                                                                             'File'},
                             'CheckpointConfig': {'LocalPath': 'string',
                                                  'S3Uri': 'string'},
                             'DefinitionName': 'string',
                             'EnableInterContainerTrafficEncryption': 'boolean',
                             'EnableManagedSpotTraining': 'boolean',
                             'EnableNetworkIsolation': 'boolean',
                             'HyperParameterRanges': {'CategoricalParameterRanges': [{'Name': 'string',
                                                                                      'Values': ['string']}],
                                                      'ContinuousParameterRanges': [{'MaxValue': 'string',
                                                                                     'MinValue': 'string',
                                                                                     'Name': 'string',
                                                                                     'ScalingType': 'Auto '
                                                                                                    '| '
                                                                                                    'Linear '
                                                                                                    '| '
                                                                                                    'Logarithmic '
                                                                                                    '| '
                                                                                                    'ReverseLogarithmic'}],
                                                      'IntegerParameterRanges': [{'MaxValue': 'string',
                                                                                  'MinValue': 'string',
                                                                                  'Name': 'string',
                                                                                  'ScalingType': 'Auto '
                                                                                                 '| '
                                                                                                 'Linear '
                                                                                                 '| '
                                                                                                 'Logarithmic '
                                                                                                 '| '
                                                                                                 'ReverseLogarithmic'}]},
                             'InputDataConfig': [{'ChannelName': 'string',
                                                  'CompressionType': 'None | '
                                                                     'Gzip',
                                                  'ContentType': 'string',
                                                  'DataSource': {'FileSystemDataSource': {'DirectoryPath': 'string',
                                                                                          'FileSystemAccessMode': 'rw '
                                                                                                                  '| '
                                                                                                                  'ro',
                                                                                          'FileSystemId': 'string',
                                                                                          'FileSystemType': 'EFS '
                                                                                                            '| '
                                                                                                            'FSxLustre'},
                                                                 'S3DataSource': {'AttributeNames': ['string'],
                                                                                  'S3DataDistributionType': 'FullyReplicated '
                                                                                                            '| '
                                                                                                            'ShardedByS3Key',
                                                                                  'S3DataType': 'ManifestFile '
                                                                                                '| '
                                                                                                'S3Prefix '
                                                                                                '| '
                                                                                                'AugmentedManifestFile',
                                                                                  'S3Uri': 'string'}},
                                                  'InputMode': 'Pipe | File',
                                                  'RecordWrapperType': 'None | '
                                                                       'RecordIO',
                                                  'ShuffleConfig': {'Seed': 'long'}}],
                             'OutputDataConfig': {'KmsKeyId': 'string',
                                                  'S3OutputPath': 'string'},
                             'ResourceConfig': {'InstanceCount': 'integer',
                                                'InstanceType': 'ml.m4.xlarge '
                                                                '| '
                                                                'ml.m4.2xlarge '
                                                                '| '
                                                                'ml.m4.4xlarge '
                                                                '| '
                                                                'ml.m4.10xlarge '
                                                                '| '
                                                                'ml.m4.16xlarge '
                                                                '| ml.m5.large '
                                                                '| '
                                                                'ml.m5.xlarge '
                                                                '| '
                                                                'ml.m5.2xlarge '
                                                                '| '
                                                                'ml.m5.4xlarge '
                                                                '| '
                                                                'ml.m5.12xlarge '
                                                                '| '
                                                                'ml.m5.24xlarge '
                                                                '| '
                                                                'ml.c4.xlarge '
                                                                '| '
                                                                'ml.c4.2xlarge '
                                                                '| '
                                                                'ml.c4.4xlarge '
                                                                '| '
                                                                'ml.c4.8xlarge '
                                                                '| '
                                                                'ml.p2.xlarge '
                                                                '| '
                                                                'ml.p2.8xlarge '
                                                                '| '
                                                                'ml.p2.16xlarge '
                                                                '| '
                                                                'ml.p3.2xlarge '
                                                                '| '
                                                                'ml.p3.8xlarge '
                                                                '| '
                                                                'ml.p3.16xlarge '
                                                                '| '
                                                                'ml.p3dn.24xlarge '
                                                                '| '
                                                                'ml.c5.xlarge '
                                                                '| '
                                                                'ml.c5.2xlarge '
                                                                '| '
                                                                'ml.c5.4xlarge '
                                                                '| '
                                                                'ml.c5.9xlarge '
                                                                '| '
                                                                'ml.c5.18xlarge',
                                                'VolumeKmsKeyId': 'string',
                                                'VolumeSizeInGB': 'integer'},
                             'RoleArn': 'string',
                             'StaticHyperParameters': {'string': 'string'},
                             'StoppingCondition': {'MaxRuntimeInSeconds': 'integer',
                                                   'MaxWaitTimeInSeconds': 'integer'},
                             'TuningObjective': {'MetricName': 'string',
                                                 'Type': 'Maximize | Minimize'},
                             'VpcConfig': {'SecurityGroupIds': ['string'],
                                           'Subnets': ['string']}}]}

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.

See also: AWS API Documentation

Request Syntax

client.create_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string',
    HyperParameterTuningJobConfig={
        'Strategy': 'Bayesian'|'Random',
        'HyperParameterTuningJobObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'ResourceLimits': {
            'MaxNumberOfTrainingJobs': 123,
            'MaxParallelTrainingJobs': 123
        },
        'ParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'TrainingJobEarlyStoppingType': 'Off'|'Auto',
        'TuningJobCompletionCriteria': {
            'TargetObjectiveMetricValue': ...
        }
    },
    TrainingJobDefinition={
        'DefinitionName': 'string',
        'TuningObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'HyperParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'StaticHyperParameters': {
            'string': 'string'
        },
        'AlgorithmSpecification': {
            'TrainingImage': 'string',
            'TrainingInputMode': 'Pipe'|'File',
            'AlgorithmName': 'string',
            'MetricDefinitions': [
                {
                    'Name': 'string',
                    'Regex': 'string'
                },
            ]
        },
        'RoleArn': 'string',
        'InputDataConfig': [
            {
                'ChannelName': 'string',
                'DataSource': {
                    'S3DataSource': {
                        'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                        'S3Uri': 'string',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'AttributeNames': [
                            'string',
                        ]
                    },
                    'FileSystemDataSource': {
                        'FileSystemId': 'string',
                        'FileSystemAccessMode': 'rw'|'ro',
                        'FileSystemType': 'EFS'|'FSxLustre',
                        'DirectoryPath': 'string'
                    }
                },
                'ContentType': 'string',
                'CompressionType': 'None'|'Gzip',
                'RecordWrapperType': 'None'|'RecordIO',
                'InputMode': 'Pipe'|'File',
                'ShuffleConfig': {
                    'Seed': 123
                }
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'OutputDataConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string'
        },
        'ResourceConfig': {
            'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
            'InstanceCount': 123,
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 123,
            'MaxWaitTimeInSeconds': 123
        },
        'EnableNetworkIsolation': True|False,
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableManagedSpotTraining': True|False,
        'CheckpointConfig': {
            'S3Uri': 'string',
            'LocalPath': 'string'
        }
    },
    TrainingJobDefinitions=[
        {
            'DefinitionName': 'string',
            'TuningObjective': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
            'HyperParameterRanges': {
                'IntegerParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'ContinuousParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'CategoricalParameterRanges': [
                    {
                        'Name': 'string',
                        'Values': [
                            'string',
                        ]
                    },
                ]
            },
            'StaticHyperParameters': {
                'string': 'string'
            },
            'AlgorithmSpecification': {
                'TrainingImage': 'string',
                'TrainingInputMode': 'Pipe'|'File',
                'AlgorithmName': 'string',
                'MetricDefinitions': [
                    {
                        'Name': 'string',
                        'Regex': 'string'
                    },
                ]
            },
            'RoleArn': 'string',
            'InputDataConfig': [
                {
                    'ChannelName': 'string',
                    'DataSource': {
                        'S3DataSource': {
                            'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                            'S3Uri': 'string',
                            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                            'AttributeNames': [
                                'string',
                            ]
                        },
                        'FileSystemDataSource': {
                            'FileSystemId': 'string',
                            'FileSystemAccessMode': 'rw'|'ro',
                            'FileSystemType': 'EFS'|'FSxLustre',
                            'DirectoryPath': 'string'
                        }
                    },
                    'ContentType': 'string',
                    'CompressionType': 'None'|'Gzip',
                    'RecordWrapperType': 'None'|'RecordIO',
                    'InputMode': 'Pipe'|'File',
                    'ShuffleConfig': {
                        'Seed': 123
                    }
                },
            ],
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            },
            'OutputDataConfig': {
                'KmsKeyId': 'string',
                'S3OutputPath': 'string'
            },
            'ResourceConfig': {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
                'InstanceCount': 123,
                'VolumeSizeInGB': 123,
                'VolumeKmsKeyId': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123,
                'MaxWaitTimeInSeconds': 123
            },
            'EnableNetworkIsolation': True|False,
            'EnableInterContainerTrafficEncryption': True|False,
            'EnableManagedSpotTraining': True|False,
            'CheckpointConfig': {
                'S3Uri': 'string',
                'LocalPath': 'string'
            }
        },
    ],
    WarmStartConfig={
        'ParentHyperParameterTuningJobs': [
            {
                'HyperParameterTuningJobName': 'string'
            },
        ],
        'WarmStartType': 'IdenticalDataAndAlgorithm'|'TransferLearning'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type HyperParameterTuningJobName

string

param HyperParameterTuningJobName

[REQUIRED]

The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

type HyperParameterTuningJobConfig

dict

param HyperParameterTuningJobConfig

[REQUIRED]

The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see automatic-model-tuning

  • Strategy (string) -- [REQUIRED]

    Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian . To randomly search, set it to Random . For information about search strategies, see How Hyperparameter Tuning Works.

  • HyperParameterTuningJobObjective (dict) --

    The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

    • Type (string) -- [REQUIRED]

      Whether to minimize or maximize the objective metric.

    • MetricName (string) -- [REQUIRED]

      The name of the metric to use for the objective metric.

  • ResourceLimits (dict) -- [REQUIRED]

    The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

    • MaxNumberOfTrainingJobs (integer) -- [REQUIRED]

      The maximum number of training jobs that a hyperparameter tuning job can launch.

    • MaxParallelTrainingJobs (integer) -- [REQUIRED]

      The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

  • ParameterRanges (dict) --

    The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

    • IntegerParameterRanges (list) --

      The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

      • (dict) --

        For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

        • Name (string) -- [REQUIRED]

          The name of the hyperparameter to search.

        • MinValue (string) -- [REQUIRED]

          The minimum value of the hyperparameter to search.

        • MaxValue (string) -- [REQUIRED]

          The maximum value of the hyperparameter to search.

        • ScalingType (string) --

          The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

          Auto

          Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

          Linear

          Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

          Logarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

          Logarithmic scaling works only for ranges that have only values greater than 0.

    • ContinuousParameterRanges (list) --

      The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

      • (dict) --

        A list of continuous hyperparameters to tune.

        • Name (string) -- [REQUIRED]

          The name of the continuous hyperparameter to tune.

        • MinValue (string) -- [REQUIRED]

          The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

        • MaxValue (string) -- [REQUIRED]

          The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

        • ScalingType (string) --

          The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

          Auto

          Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

          Linear

          Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

          Logarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

          Logarithmic scaling works only for ranges that have only values greater than 0.

          ReverseLogarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

          Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

    • CategoricalParameterRanges (list) --

      The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

      • (dict) --

        A list of categorical hyperparameters to tune.

        • Name (string) -- [REQUIRED]

          The name of the categorical hyperparameter to tune.

        • Values (list) -- [REQUIRED]

          A list of the categories for the hyperparameter.

          • (string) --

  • TrainingJobEarlyStoppingType (string) --

    Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF ):

    OFF

    Training jobs launched by the hyperparameter tuning job do not use early stopping.

    AUTO

    Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

  • TuningJobCompletionCriteria (dict) --

    The tuning job's completion criteria.

    • TargetObjectiveMetricValue (float) -- [REQUIRED]

      The objective metric's value.

type TrainingJobDefinition

dict

param TrainingJobDefinition

The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

  • DefinitionName (string) --

    The job definition name.

  • TuningObjective (dict) --

    Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

    • Type (string) -- [REQUIRED]

      Whether to minimize or maximize the objective metric.

    • MetricName (string) -- [REQUIRED]

      The name of the metric to use for the objective metric.

  • HyperParameterRanges (dict) --

    Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

    Note

    You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.

    • IntegerParameterRanges (list) --

      The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

      • (dict) --

        For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

        • Name (string) -- [REQUIRED]

          The name of the hyperparameter to search.

        • MinValue (string) -- [REQUIRED]

          The minimum value of the hyperparameter to search.

        • MaxValue (string) -- [REQUIRED]

          The maximum value of the hyperparameter to search.

        • ScalingType (string) --

          The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

          Auto

          Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

          Linear

          Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

          Logarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

          Logarithmic scaling works only for ranges that have only values greater than 0.

    • ContinuousParameterRanges (list) --

      The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

      • (dict) --

        A list of continuous hyperparameters to tune.

        • Name (string) -- [REQUIRED]

          The name of the continuous hyperparameter to tune.

        • MinValue (string) -- [REQUIRED]

          The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

        • MaxValue (string) -- [REQUIRED]

          The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

        • ScalingType (string) --

          The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

          Auto

          Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

          Linear

          Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

          Logarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

          Logarithmic scaling works only for ranges that have only values greater than 0.

          ReverseLogarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

          Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

    • CategoricalParameterRanges (list) --

      The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

      • (dict) --

        A list of categorical hyperparameters to tune.

        • Name (string) -- [REQUIRED]

          The name of the categorical hyperparameter to tune.

        • Values (list) -- [REQUIRED]

          A list of the categories for the hyperparameter.

          • (string) --

  • StaticHyperParameters (dict) --

    Specifies the values of hyperparameters that do not change for the tuning job.

    • (string) --

      • (string) --

  • AlgorithmSpecification (dict) -- [REQUIRED]

    The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

    • TrainingImage (string) --

      The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

    • TrainingInputMode (string) -- [REQUIRED]

      The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

      If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.

      For more information about input modes, see Algorithms.

    • AlgorithmName (string) --

      The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

    • MetricDefinitions (list) --

      An array of MetricDefinition objects that specify the metrics that the algorithm emits.

      • (dict) --

        Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

        • Name (string) -- [REQUIRED]

          The name of the metric.

        • Regex (string) -- [REQUIRED]

          A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

  • RoleArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

  • InputDataConfig (list) --

    An array of Channel objects that specify the input for the training jobs that the tuning job launches.

    • (dict) --

      A channel is a named input source that training algorithms can consume.

      • ChannelName (string) -- [REQUIRED]

        The name of the channel.

      • DataSource (dict) -- [REQUIRED]

        The location of the channel data.

        • S3DataSource (dict) --

          The S3 location of the data source that is associated with a channel.

          • S3DataType (string) -- [REQUIRED]

            If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

            If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

            If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

          • S3Uri (string) -- [REQUIRED]

            Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

            • A key name prefix might look like this: s3://bucketname/exampleprefix .

            • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

          • S3DataDistributionType (string) --

            If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

            If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

            Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

            In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

          • AttributeNames (list) --

            A list of one or more attribute names to use that are found in a specified augmented manifest file.

            • (string) --

        • FileSystemDataSource (dict) --

          The file system that is associated with a channel.

          • FileSystemId (string) -- [REQUIRED]

            The file system id.

          • FileSystemAccessMode (string) -- [REQUIRED]

            The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

          • FileSystemType (string) -- [REQUIRED]

            The file system type.

          • DirectoryPath (string) -- [REQUIRED]

            The full path to the directory to associate with the channel.

      • ContentType (string) --

        The MIME type of the data.

      • CompressionType (string) --

        If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

      • RecordWrapperType (string) --

        Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

        In File mode, leave this field unset or set it to None.

      • InputMode (string) --

        (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

        To use a model for incremental training, choose File input model.

      • ShuffleConfig (dict) --

        A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

        For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

        • Seed (integer) -- [REQUIRED]

          Determines the shuffling order in ShuffleConfig value.

  • VpcConfig (dict) --

    The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

    • SecurityGroupIds (list) -- [REQUIRED]

      The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

      • (string) --

    • Subnets (list) -- [REQUIRED]

      The ID of the subnets in the VPC to which you want to connect your training job or model.

      Note

      Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

      • (string) --

  • OutputDataConfig (dict) -- [REQUIRED]

    Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

    • KmsKeyId (string) --

      The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • // KMS Key Alias "alias/ExampleAlias"

      • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

      The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

    • S3OutputPath (string) -- [REQUIRED]

      Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

  • ResourceConfig (dict) -- [REQUIRED]

    The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

    Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

    • InstanceType (string) -- [REQUIRED]

      The ML compute instance type.

    • InstanceCount (integer) -- [REQUIRED]

      The number of ML compute instances to use. For distributed training, provide a value greater than 1.

    • VolumeSizeInGB (integer) -- [REQUIRED]

      The size of the ML storage volume that you want to provision.

      ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

      You must specify sufficient ML storage for your scenario.

      Note

      Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

      Note

      Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

      For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

    • VolumeKmsKeyId (string) --

      The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

      Note

      Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

      For a list of instance types that support local instance storage, see Instance Store Volumes.

      For more information about local instance storage encryption, see SSD Instance Store Volumes.

      The VolumeKmsKeyId can be in any of the following formats:

      • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

      • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

  • StoppingCondition (dict) -- [REQUIRED]

    Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

    • MaxRuntimeInSeconds (integer) --

      The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

    • MaxWaitTimeInSeconds (integer) --

      The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

  • EnableNetworkIsolation (boolean) --

    Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

    Note

    The Semantic Segmentation built-in algorithm does not support network isolation.

  • EnableInterContainerTrafficEncryption (boolean) --

    To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

  • EnableManagedSpotTraining (boolean) --

    A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

  • CheckpointConfig (dict) --

    Contains information about the output location for managed spot training checkpoint data.

    • S3Uri (string) -- [REQUIRED]

      Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

    • LocalPath (string) --

      (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

type TrainingJobDefinitions

list

param TrainingJobDefinitions
  • (dict) --

    Defines the training jobs launched by a hyperparameter tuning job.

    • DefinitionName (string) --

      The job definition name.

    • TuningObjective (dict) --

      Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

      • Type (string) -- [REQUIRED]

        Whether to minimize or maximize the objective metric.

      • MetricName (string) -- [REQUIRED]

        The name of the metric to use for the objective metric.

    • HyperParameterRanges (dict) --

      Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

      Note

      You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.

      • IntegerParameterRanges (list) --

        The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

          • Name (string) -- [REQUIRED]

            The name of the hyperparameter to search.

          • MinValue (string) -- [REQUIRED]

            The minimum value of the hyperparameter to search.

          • MaxValue (string) -- [REQUIRED]

            The maximum value of the hyperparameter to search.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

            Auto

            Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have only values greater than 0.

      • ContinuousParameterRanges (list) --

        The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          A list of continuous hyperparameters to tune.

          • Name (string) -- [REQUIRED]

            The name of the continuous hyperparameter to tune.

          • MinValue (string) -- [REQUIRED]

            The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

          • MaxValue (string) -- [REQUIRED]

            The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

          • ScalingType (string) --

            The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

            Auto

            Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

            Linear

            Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

            Logarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

            Logarithmic scaling works only for ranges that have only values greater than 0.

            ReverseLogarithmic

            Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

            Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

      • CategoricalParameterRanges (list) --

        The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

        • (dict) --

          A list of categorical hyperparameters to tune.

          • Name (string) -- [REQUIRED]

            The name of the categorical hyperparameter to tune.

          • Values (list) -- [REQUIRED]

            A list of the categories for the hyperparameter.

            • (string) --

    • StaticHyperParameters (dict) --

      Specifies the values of hyperparameters that do not change for the tuning job.

      • (string) --

        • (string) --

    • AlgorithmSpecification (dict) -- [REQUIRED]

      The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

      • TrainingImage (string) --

        The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • TrainingInputMode (string) -- [REQUIRED]

        The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

        If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.

        For more information about input modes, see Algorithms.

      • AlgorithmName (string) --

        The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

      • MetricDefinitions (list) --

        An array of MetricDefinition objects that specify the metrics that the algorithm emits.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

          • Name (string) -- [REQUIRED]

            The name of the metric.

          • Regex (string) -- [REQUIRED]

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

    • RoleArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

    • InputDataConfig (list) --

      An array of Channel objects that specify the input for the training jobs that the tuning job launches.

      • (dict) --

        A channel is a named input source that training algorithms can consume.

        • ChannelName (string) -- [REQUIRED]

          The name of the channel.

        • DataSource (dict) -- [REQUIRED]

          The location of the channel data.

          • S3DataSource (dict) --

            The S3 location of the data source that is associated with a channel.

            • S3DataType (string) -- [REQUIRED]

              If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

              If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

              If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

            • S3Uri (string) -- [REQUIRED]

              Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

              • A key name prefix might look like this: s3://bucketname/exampleprefix .

              • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

            • S3DataDistributionType (string) --

              If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

              If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

              Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

              In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

            • AttributeNames (list) --

              A list of one or more attribute names to use that are found in a specified augmented manifest file.

              • (string) --

          • FileSystemDataSource (dict) --

            The file system that is associated with a channel.

            • FileSystemId (string) -- [REQUIRED]

              The file system id.

            • FileSystemAccessMode (string) -- [REQUIRED]

              The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

            • FileSystemType (string) -- [REQUIRED]

              The file system type.

            • DirectoryPath (string) -- [REQUIRED]

              The full path to the directory to associate with the channel.

        • ContentType (string) --

          The MIME type of the data.

        • CompressionType (string) --

          If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

        • RecordWrapperType (string) --

          Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

          In File mode, leave this field unset or set it to None.

        • InputMode (string) --

          (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

          To use a model for incremental training, choose File input model.

        • ShuffleConfig (dict) --

          A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

          For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

          • Seed (integer) -- [REQUIRED]

            Determines the shuffling order in ShuffleConfig value.

    • VpcConfig (dict) --

      The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --

      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model.

        Note

        Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

        • (string) --

    • OutputDataConfig (dict) -- [REQUIRED]

      Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

      • KmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • // KMS Key Alias "alias/ExampleAlias"

        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

      • S3OutputPath (string) -- [REQUIRED]

        Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

    • ResourceConfig (dict) -- [REQUIRED]

      The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

      Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

      • InstanceType (string) -- [REQUIRED]

        The ML compute instance type.

      • InstanceCount (integer) -- [REQUIRED]

        The number of ML compute instances to use. For distributed training, provide a value greater than 1.

      • VolumeSizeInGB (integer) -- [REQUIRED]

        The size of the ML storage volume that you want to provision.

        ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

        You must specify sufficient ML storage for your scenario.

        Note

        Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

        Note

        Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

        For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

      • VolumeKmsKeyId (string) --

        The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

        Note

        Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

        For a list of instance types that support local instance storage, see Instance Store Volumes.

        For more information about local instance storage encryption, see SSD Instance Store Volumes.

        The VolumeKmsKeyId can be in any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • StoppingCondition (dict) -- [REQUIRED]

      Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

      • MaxRuntimeInSeconds (integer) --

        The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

      • MaxWaitTimeInSeconds (integer) --

        The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

    • EnableNetworkIsolation (boolean) --

      Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

      Note

      The Semantic Segmentation built-in algorithm does not support network isolation.

    • EnableInterContainerTrafficEncryption (boolean) --

      To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

    • EnableManagedSpotTraining (boolean) --

      A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

    • CheckpointConfig (dict) --

      Contains information about the output location for managed spot training checkpoint data.

      • S3Uri (string) -- [REQUIRED]

        Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

      • LocalPath (string) --

        (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

type WarmStartConfig

dict

param WarmStartConfig

Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

Note

All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

  • ParentHyperParameterTuningJobs (list) -- [REQUIRED]

    An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point.

    Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.

    • (dict) --

      A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

      • HyperParameterTuningJobName (string) --

        The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

  • WarmStartType (string) -- [REQUIRED]

    Specifies one of the following:

    IDENTICAL_DATA_AND_ALGORITHM

    The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

    TRANSFER_LEARNING

    The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

type Tags

list

param Tags

An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see AWS Tagging Strategies.

Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'HyperParameterTuningJobArn': 'string'
}

Response Structure

  • (dict) --

    • HyperParameterTuningJobArn (string) --

      The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.

CreateModelPackage (updated) Link ¶
Changes (request)
{'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.inf1.24xlarge',
                                                                        'ml.inf1.2xlarge',
                                                                        'ml.inf1.6xlarge',
                                                                        'ml.inf1.xlarge'}}}

Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification . To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification .

See also: AWS API Documentation

Request Syntax

client.create_model_package(
    ModelPackageName='string',
    ModelPackageDescription='string',
    InferenceSpecification={
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    ValidationSpecification={
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    SourceAlgorithmSpecification={
        'SourceAlgorithms': [
            {
                'ModelDataUrl': 'string',
                'AlgorithmName': 'string'
            },
        ]
    },
    CertifyForMarketplace=True|False
)
type ModelPackageName

string

param ModelPackageName

[REQUIRED]

The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

type ModelPackageDescription

string

param ModelPackageDescription

A description of the model package.

type InferenceSpecification

dict

param InferenceSpecification

Specifies details about inference jobs that can be run with models based on this model package, including the following:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the model package supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the model package supports for inference.

  • Containers (list) -- [REQUIRED]

    The Amazon ECR registry path of the Docker image that contains the inference code.

    • (dict) --

      Describes the Docker container for the model package.

      • ContainerHostname (string) --

        The DNS host name for the Docker container.

      • Image (string) -- [REQUIRED]

        The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

        If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • ImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • ModelDataUrl (string) --

        The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

      • ProductId (string) --

        The AWS Marketplace product ID of the model package.

  • SupportedTransformInstanceTypes (list) -- [REQUIRED]

    A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

    • (string) --

  • SupportedRealtimeInferenceInstanceTypes (list) -- [REQUIRED]

    A list of the instance types that are used to generate inferences in real-time.

    • (string) --

  • SupportedContentTypes (list) -- [REQUIRED]

    The supported MIME types for the input data.

    • (string) --

  • SupportedResponseMIMETypes (list) -- [REQUIRED]

    The supported MIME types for the output data.

    • (string) --

type ValidationSpecification

dict

param ValidationSpecification

Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.

  • ValidationRole (string) -- [REQUIRED]

    The IAM roles to be used for the validation of the model package.

  • ValidationProfiles (list) -- [REQUIRED]

    An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.

    • (dict) --

      Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

      The data provided in the validation profile is made available to your buyers on AWS Marketplace.

      • ProfileName (string) -- [REQUIRED]

        The name of the profile for the model package.

      • TransformJobDefinition (dict) -- [REQUIRED]

        The TransformJobDefinition object that describes the transform job used for the validation of the model package.

        • MaxConcurrentTransforms (integer) --

          The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

        • MaxPayloadInMB (integer) --

          The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

        • BatchStrategy (string) --

          A string that determines the number of records included in a single mini-batch.

          SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

        • Environment (dict) --

          The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

          • (string) --

            • (string) --

        • TransformInput (dict) -- [REQUIRED]

          A description of the input source and the way the transform job consumes it.

          • DataSource (dict) -- [REQUIRED]

            Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

            • S3DataSource (dict) -- [REQUIRED]

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) -- [REQUIRED]

                If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                The following values are compatible: ManifestFile , S3Prefix

                The following value is not compatible: AugmentedManifestFile

              • S3Uri (string) -- [REQUIRED]

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix .

                • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

          • ContentType (string) --

            The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

          • CompressionType (string) --

            If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

          • SplitType (string) --

            The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats.

            When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

            Note

            Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

            For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

        • TransformOutput (dict) -- [REQUIRED]

          Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

          • S3OutputPath (string) -- [REQUIRED]

            The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

            For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

          • Accept (string) --

            The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

          • AssembleWith (string) --

            Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

          • KmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

        • TransformResources (dict) -- [REQUIRED]

          Identifies the ML compute instances for the transform job.

          • InstanceType (string) -- [REQUIRED]

            The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

          • InstanceCount (integer) -- [REQUIRED]

            The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1 .

          • VolumeKmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type SourceAlgorithmSpecification

dict

param SourceAlgorithmSpecification

Details about the algorithm that was used to create the model package.

  • SourceAlgorithms (list) -- [REQUIRED]

    A list of the algorithms that were used to create a model package.

    • (dict) --

      Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.

      • ModelDataUrl (string) --

        The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

      • AlgorithmName (string) -- [REQUIRED]

        The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.

type CertifyForMarketplace

boolean

param CertifyForMarketplace

Whether to certify the model package for listing on AWS Marketplace.

rtype

dict

returns

Response Syntax

{
    'ModelPackageArn': 'string'
}

Response Structure

  • (dict) --

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the new model package.

CreateTrainingJob (updated) Link ¶
Changes (request)
{'AlgorithmSpecification': {'EnableSageMakerMetricsTimeSeries': 'boolean'},
 'DebugHookConfig': {'CollectionConfigurations': [{'CollectionName': 'string',
                                                   'CollectionParameters': {'string': 'string'}}],
                     'HookParameters': {'string': 'string'},
                     'LocalPath': 'string',
                     'S3OutputPath': 'string'},
 'DebugRuleConfigurations': [{'InstanceType': 'ml.t3.medium | ml.t3.large | '
                                              'ml.t3.xlarge | ml.t3.2xlarge | '
                                              'ml.m4.xlarge | ml.m4.2xlarge | '
                                              'ml.m4.4xlarge | ml.m4.10xlarge '
                                              '| ml.m4.16xlarge | ml.c4.xlarge '
                                              '| ml.c4.2xlarge | ml.c4.4xlarge '
                                              '| ml.c4.8xlarge | ml.p2.xlarge '
                                              '| ml.p2.8xlarge | '
                                              'ml.p2.16xlarge | ml.p3.2xlarge '
                                              '| ml.p3.8xlarge | '
                                              'ml.p3.16xlarge | ml.c5.xlarge | '
                                              'ml.c5.2xlarge | ml.c5.4xlarge | '
                                              'ml.c5.9xlarge | ml.c5.18xlarge '
                                              '| ml.m5.large | ml.m5.xlarge | '
                                              'ml.m5.2xlarge | ml.m5.4xlarge | '
                                              'ml.m5.12xlarge | ml.m5.24xlarge '
                                              '| ml.r5.large | ml.r5.xlarge | '
                                              'ml.r5.2xlarge | ml.r5.4xlarge | '
                                              'ml.r5.8xlarge | ml.r5.12xlarge '
                                              '| ml.r5.16xlarge | '
                                              'ml.r5.24xlarge',
                              'LocalPath': 'string',
                              'RuleConfigurationName': 'string',
                              'RuleEvaluatorImage': 'string',
                              'RuleParameters': {'string': 'string'},
                              'S3OutputPath': 'string',
                              'VolumeSizeInGB': 'integer'}],
 'ExperimentConfig': {'ExperimentName': 'string',
                      'TrialComponentDisplayName': 'string',
                      'TrialName': 'string'},
 'TensorBoardOutputConfig': {'LocalPath': 'string', 'S3OutputPath': 'string'}}

Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences.

In the request body, you provide the following:

  • AlgorithmSpecification - Identifies the training algorithm to use.

  • HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.

  • InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.

  • OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.

  • ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.

  • EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.

  • RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.

  • StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete.

For more information about Amazon SageMaker, see How It Works.

See also: AWS API Documentation

Request Syntax

client.create_training_job(
    TrainingJobName='string',
    HyperParameters={
        'string': 'string'
    },
    AlgorithmSpecification={
        'TrainingImage': 'string',
        'AlgorithmName': 'string',
        'TrainingInputMode': 'Pipe'|'File',
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'EnableSageMakerMetricsTimeSeries': True|False
    },
    RoleArn='string',
    InputDataConfig=[
        {
            'ChannelName': 'string',
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                    'S3Uri': 'string',
                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                    'AttributeNames': [
                        'string',
                    ]
                },
                'FileSystemDataSource': {
                    'FileSystemId': 'string',
                    'FileSystemAccessMode': 'rw'|'ro',
                    'FileSystemType': 'EFS'|'FSxLustre',
                    'DirectoryPath': 'string'
                }
            },
            'ContentType': 'string',
            'CompressionType': 'None'|'Gzip',
            'RecordWrapperType': 'None'|'RecordIO',
            'InputMode': 'Pipe'|'File',
            'ShuffleConfig': {
                'Seed': 123
            }
        },
    ],
    OutputDataConfig={
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    ResourceConfig={
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
        'InstanceCount': 123,
        'VolumeSizeInGB': 123,
        'VolumeKmsKeyId': 'string'
    },
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    StoppingCondition={
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    EnableNetworkIsolation=True|False,
    EnableInterContainerTrafficEncryption=True|False,
    EnableManagedSpotTraining=True|False,
    CheckpointConfig={
        'S3Uri': 'string',
        'LocalPath': 'string'
    },
    DebugHookConfig={
        'LocalPath': 'string',
        'S3OutputPath': 'string',
        'HookParameters': {
            'string': 'string'
        },
        'CollectionConfigurations': [
            {
                'CollectionName': 'string',
                'CollectionParameters': {
                    'string': 'string'
                }
            },
        ]
    },
    DebugRuleConfigurations=[
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    TensorBoardOutputConfig={
        'LocalPath': 'string',
        'S3OutputPath': 'string'
    },
    ExperimentConfig={
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string'
    }
)
type TrainingJobName

string

param TrainingJobName

[REQUIRED]

The name of the training job. The name must be unique within an AWS Region in an AWS account.

type HyperParameters

dict

param HyperParameters

Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.

You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint .

  • (string) --

    • (string) --

type AlgorithmSpecification

dict

param AlgorithmSpecification

[REQUIRED]

The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.

  • TrainingImage (string) --

    The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

  • AlgorithmName (string) --

    The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage .

  • TrainingInputMode (string) -- [REQUIRED]

    The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.

    In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.

    For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.

  • MetricDefinitions (list) --

    A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.

    • (dict) --

      Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

      • Name (string) -- [REQUIRED]

        The name of the metric.

      • Regex (string) -- [REQUIRED]

        A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

  • EnableSageMakerMetricsTimeSeries (boolean) --

    To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:

    • You use one of the Amazon SageMaker built-in algorithms

    • You use one of the following prebuilt Amazon SageMaker Docker images:

      • Tensorflow

      • MXNet

      • PyTorch

    • You specify at least one MetricDefinition

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker Roles.

Note

To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.

type InputDataConfig

list

param InputDataConfig

An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.

Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data . The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.

Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.

  • (dict) --

    A channel is a named input source that training algorithms can consume.

    • ChannelName (string) -- [REQUIRED]

      The name of the channel.

    • DataSource (dict) -- [REQUIRED]

      The location of the channel data.

      • S3DataSource (dict) --

        The S3 location of the data source that is associated with a channel.

        • S3DataType (string) -- [REQUIRED]

          If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

          If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

          If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

        • S3Uri (string) -- [REQUIRED]

          Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

          • A key name prefix might look like this: s3://bucketname/exampleprefix .

          • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

        • S3DataDistributionType (string) --

          If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

          If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

          Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

          In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

        • AttributeNames (list) --

          A list of one or more attribute names to use that are found in a specified augmented manifest file.

          • (string) --

      • FileSystemDataSource (dict) --

        The file system that is associated with a channel.

        • FileSystemId (string) -- [REQUIRED]

          The file system id.

        • FileSystemAccessMode (string) -- [REQUIRED]

          The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

        • FileSystemType (string) -- [REQUIRED]

          The file system type.

        • DirectoryPath (string) -- [REQUIRED]

          The full path to the directory to associate with the channel.

    • ContentType (string) --

      The MIME type of the data.

    • CompressionType (string) --

      If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

    • RecordWrapperType (string) --

      Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

      In File mode, leave this field unset or set it to None.

    • InputMode (string) --

      (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

      To use a model for incremental training, choose File input model.

    • ShuffleConfig (dict) --

      A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

      For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

      • Seed (integer) -- [REQUIRED]

        Determines the shuffling order in ShuffleConfig value.

type OutputDataConfig

dict

param OutputDataConfig

[REQUIRED]

Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

  • KmsKeyId (string) --

    The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

    • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

    • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • // KMS Key Alias "alias/ExampleAlias"

    • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

    If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

    The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

  • S3OutputPath (string) -- [REQUIRED]

    Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

type ResourceConfig

dict

param ResourceConfig

[REQUIRED]

The resources, including the ML compute instances and ML storage volumes, to use for model training.

ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

  • InstanceType (string) -- [REQUIRED]

    The ML compute instance type.

  • InstanceCount (integer) -- [REQUIRED]

    The number of ML compute instances to use. For distributed training, provide a value greater than 1.

  • VolumeSizeInGB (integer) -- [REQUIRED]

    The size of the ML storage volume that you want to provision.

    ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

    You must specify sufficient ML storage for your scenario.

    Note

    Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

    Note

    Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

    For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

  • VolumeKmsKeyId (string) --

    The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

    Note

    Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

    For a list of instance types that support local instance storage, see Instance Store Volumes.

    For more information about local instance storage encryption, see SSD Instance Store Volumes.

    The VolumeKmsKeyId can be in any of the following formats:

    • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

    • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig

dict

param VpcConfig

A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

  • SecurityGroupIds (list) -- [REQUIRED]

    The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID of the subnets in the VPC to which you want to connect your training job or model.

    Note

    Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

    • (string) --

type StoppingCondition

dict

param StoppingCondition

[REQUIRED]

Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

  • MaxRuntimeInSeconds (integer) --

    The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

  • MaxWaitTimeInSeconds (integer) --

    The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

type Tags

list

param Tags

An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type EnableNetworkIsolation

boolean

param EnableNetworkIsolation

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Note

The Semantic Segmentation built-in algorithm does not support network isolation.

type EnableInterContainerTrafficEncryption

boolean

param EnableInterContainerTrafficEncryption

To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.

type EnableManagedSpotTraining

boolean

param EnableManagedSpotTraining

To train models using managed spot training, choose True . Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.

The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.

type CheckpointConfig

dict

param CheckpointConfig

Contains information about the output location for managed spot training checkpoint data.

  • S3Uri (string) -- [REQUIRED]

    Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

  • LocalPath (string) --

    (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

type DebugHookConfig

dict

param DebugHookConfig

Configuration information for the debug hook parameters, collection configuration, and storage paths.

  • LocalPath (string) --

    Path to local storage location for tensors. Defaults to /opt/ml/output/tensors/ .

  • S3OutputPath (string) -- [REQUIRED]

    Path to Amazon S3 storage location for tensors.

  • HookParameters (dict) --

    Configuration information for the debug hook parameters.

    • (string) --

      • (string) --

  • CollectionConfigurations (list) --

    Configuration information for tensor collections.

    • (dict) --

      Configuration information for tensor collections.

      • CollectionName (string) --

        The name of the tensor collection.

      • CollectionParameters (dict) --

        Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .

        • (string) --

          • (string) --

type DebugRuleConfigurations

list

param DebugRuleConfigurations

Configuration information for debugging rules.

  • (dict) --

    Configuration information for debugging rules.

    • RuleConfigurationName (string) -- [REQUIRED]

      The name of the rule configuration. It must be unique relative to other rule configuration names.

    • LocalPath (string) --

      Path to local storage location for rules. Defaults to /opt/ml/processing/output/rule/ .

    • S3OutputPath (string) --

      Path to Amazon S3 storage location for rules.

    • RuleEvaluatorImage (string) -- [REQUIRED]

      The Amazon Elastic Container (ECR) Image for the managed rule evaluation.

    • InstanceType (string) --

      The instance type to deploy for a training job.

    • VolumeSizeInGB (integer) --

      The size, in GB, of the ML storage volume attached to the notebook instance.

    • RuleParameters (dict) --

      Runtime configuration for rule container.

      • (string) --

        • (string) --

type TensorBoardOutputConfig

dict

param TensorBoardOutputConfig

Configuration of storage locations for TensorBoard output.

  • LocalPath (string) --

    Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .

  • S3OutputPath (string) -- [REQUIRED]

    Path to Amazon S3 storage location for TensorBoard output.

type ExperimentConfig

dict

param ExperimentConfig

Configuration for the experiment.

  • ExperimentName (string) --

    The name of the experiment.

  • TrialName (string) --

    The name of the trial.

  • TrialComponentDisplayName (string) --

    Display name for the trial component.

rtype

dict

returns

Response Syntax

{
    'TrainingJobArn': 'string'
}

Response Structure

  • (dict) --

    • TrainingJobArn (string) --

      The Amazon Resource Name (ARN) of the training job.

CreateTransformJob (updated) Link ¶
Changes (request)
{'ExperimentConfig': {'ExperimentName': 'string',
                      'TrialComponentDisplayName': 'string',
                      'TrialName': 'string'}}

Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.

To perform batch transformations, you create a transform job and use the data that you have readily available.

In the request body, you provide the following:

  • TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.

  • ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.

  • TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.

  • TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

  • TransformResources - Identifies the ML compute instances for the transform job.

For more information about how batch transformation works, see Batch Transform.

See also: AWS API Documentation

Request Syntax

client.create_transform_job(
    TransformJobName='string',
    ModelName='string',
    MaxConcurrentTransforms=123,
    MaxPayloadInMB=123,
    BatchStrategy='MultiRecord'|'SingleRecord',
    Environment={
        'string': 'string'
    },
    TransformInput={
        'DataSource': {
            'S3DataSource': {
                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                'S3Uri': 'string'
            }
        },
        'ContentType': 'string',
        'CompressionType': 'None'|'Gzip',
        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
    },
    TransformOutput={
        'S3OutputPath': 'string',
        'Accept': 'string',
        'AssembleWith': 'None'|'Line',
        'KmsKeyId': 'string'
    },
    TransformResources={
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
        'InstanceCount': 123,
        'VolumeKmsKeyId': 'string'
    },
    DataProcessing={
        'InputFilter': 'string',
        'OutputFilter': 'string',
        'JoinSource': 'Input'|'None'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    ExperimentConfig={
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string'
    }
)
type TransformJobName

string

param TransformJobName

[REQUIRED]

The name of the transform job. The name must be unique within an AWS Region in an AWS account.

type ModelName

string

param ModelName

[REQUIRED]

The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.

type MaxConcurrentTransforms

integer

param MaxConcurrentTransforms

The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1 . For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms .

type MaxPayloadInMB

integer

param MaxPayloadInMB

The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.

For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0 . This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

type BatchStrategy

string

param BatchStrategy

Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

To enable the batch strategy, you must set the SplitType property of the DataProcessing object to Line , RecordIO , or TFRecord .

To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line .

To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line .

type Environment

dict

param Environment

The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

  • (string) --

    • (string) --

type TransformInput

dict

param TransformInput

[REQUIRED]

Describes the input source and the way the transform job consumes it.

  • DataSource (dict) -- [REQUIRED]

    Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

    • S3DataSource (dict) -- [REQUIRED]

      The S3 location of the data source that is associated with a channel.

      • S3DataType (string) -- [REQUIRED]

        If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

        If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

        The following values are compatible: ManifestFile , S3Prefix

        The following value is not compatible: AugmentedManifestFile

      • S3Uri (string) -- [REQUIRED]

        Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

        • A key name prefix might look like this: s3://bucketname/exampleprefix .

        • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

  • ContentType (string) --

    The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

  • CompressionType (string) --

    If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

  • SplitType (string) --

    The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats.

    When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

    Note

    Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

    For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

type TransformOutput

dict

param TransformOutput

[REQUIRED]

Describes the results of the transform job.

  • S3OutputPath (string) -- [REQUIRED]

    The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

    For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

  • Accept (string) --

    The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

  • AssembleWith (string) --

    Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

  • KmsKeyId (string) --

    The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

    • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

    • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • // KMS Key Alias "alias/ExampleAlias"

    • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

    If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

    The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

type TransformResources

dict

param TransformResources

[REQUIRED]

Describes the resources, including ML instance types and ML instance count, to use for the transform job.

  • InstanceType (string) -- [REQUIRED]

    The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

  • InstanceCount (integer) -- [REQUIRED]

    The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1 .

  • VolumeKmsKeyId (string) --

    The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:

    • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

    • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type DataProcessing

dict

param DataProcessing

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

  • InputFilter (string) --

    A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $ .

    Examples: "$" , "$[1:]" , "$.features"

  • OutputFilter (string) --

    A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value, $ . If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.

    Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"

  • JoinSource (string) --

    Specifies the source of the data to join with the transformed data. The valid values are None and Input . The default value is None , which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input .

    For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput . The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput .

    For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file.

type Tags

list

param Tags

(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .

  • (dict) --

    Describes a tag.

    • Key (string) -- [REQUIRED]

      The tag key.

    • Value (string) -- [REQUIRED]

      The tag value.

type ExperimentConfig

dict

param ExperimentConfig

Configuration for the experiment.

  • ExperimentName (string) --

    The name of the experiment.

  • TrialName (string) --

    The name of the trial.

  • TrialComponentDisplayName (string) --

    Display name for the trial component.

rtype

dict

returns

Response Syntax

{
    'TransformJobArn': 'string'
}

Response Structure

  • (dict) --

    • TransformJobArn (string) --

      The Amazon Resource Name (ARN) of the transform job.

DescribeAlgorithm (updated) Link ¶
Changes (response)
{'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.inf1.24xlarge',
                                                                        'ml.inf1.2xlarge',
                                                                        'ml.inf1.6xlarge',
                                                                        'ml.inf1.xlarge'}}}

Returns a description of the specified algorithm that is in your account.

See also: AWS API Documentation

Request Syntax

client.describe_algorithm(
    AlgorithmName='string'
)
type AlgorithmName

string

param AlgorithmName

[REQUIRED]

The name of the algorithm to describe.

rtype

dict

returns

Response Syntax

{
    'AlgorithmName': 'string',
    'AlgorithmArn': 'string',
    'AlgorithmDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'TrainingSpecification': {
        'TrainingImage': 'string',
        'TrainingImageDigest': 'string',
        'SupportedHyperParameters': [
            {
                'Name': 'string',
                'Description': 'string',
                'Type': 'Integer'|'Continuous'|'Categorical'|'FreeText',
                'Range': {
                    'IntegerParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'ContinuousParameterRangeSpecification': {
                        'MinValue': 'string',
                        'MaxValue': 'string'
                    },
                    'CategoricalParameterRangeSpecification': {
                        'Values': [
                            'string',
                        ]
                    }
                },
                'IsTunable': True|False,
                'IsRequired': True|False,
                'DefaultValue': 'string'
            },
        ],
        'SupportedTrainingInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
        ],
        'SupportsDistributedTraining': True|False,
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'TrainingChannels': [
            {
                'Name': 'string',
                'Description': 'string',
                'IsRequired': True|False,
                'SupportedContentTypes': [
                    'string',
                ],
                'SupportedCompressionTypes': [
                    'None'|'Gzip',
                ],
                'SupportedInputModes': [
                    'Pipe'|'File',
                ]
            },
        ],
        'SupportedTuningJobObjectiveMetrics': [
            {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
        ]
    },
    'InferenceSpecification': {
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    'ValidationSpecification': {
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TrainingJobDefinition': {
                    'TrainingInputMode': 'Pipe'|'File',
                    'HyperParameters': {
                        'string': 'string'
                    },
                    'InputDataConfig': [
                        {
                            'ChannelName': 'string',
                            'DataSource': {
                                'S3DataSource': {
                                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                    'S3Uri': 'string',
                                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                                    'AttributeNames': [
                                        'string',
                                    ]
                                },
                                'FileSystemDataSource': {
                                    'FileSystemId': 'string',
                                    'FileSystemAccessMode': 'rw'|'ro',
                                    'FileSystemType': 'EFS'|'FSxLustre',
                                    'DirectoryPath': 'string'
                                }
                            },
                            'ContentType': 'string',
                            'CompressionType': 'None'|'Gzip',
                            'RecordWrapperType': 'None'|'RecordIO',
                            'InputMode': 'Pipe'|'File',
                            'ShuffleConfig': {
                                'Seed': 123
                            }
                        },
                    ],
                    'OutputDataConfig': {
                        'KmsKeyId': 'string',
                        'S3OutputPath': 'string'
                    },
                    'ResourceConfig': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
                        'InstanceCount': 123,
                        'VolumeSizeInGB': 123,
                        'VolumeKmsKeyId': 'string'
                    },
                    'StoppingCondition': {
                        'MaxRuntimeInSeconds': 123,
                        'MaxWaitTimeInSeconds': 123
                    }
                },
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    'AlgorithmStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
    'AlgorithmStatusDetails': {
        'ValidationStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ],
        'ImageScanStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ]
    },
    'ProductId': 'string',
    'CertifyForMarketplace': True|False
}

Response Structure

  • (dict) --

    • AlgorithmName (string) --

      The name of the algorithm being described.

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the algorithm.

    • AlgorithmDescription (string) --

      A brief summary about the algorithm.

    • CreationTime (datetime) --

      A timestamp specifying when the algorithm was created.

    • TrainingSpecification (dict) --

      Details about training jobs run by this algorithm.

      • TrainingImage (string) --

        The Amazon ECR registry path of the Docker image that contains the training algorithm.

      • TrainingImageDigest (string) --

        An MD5 hash of the training algorithm that identifies the Docker image used for training.

      • SupportedHyperParameters (list) --

        A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

        • (dict) --

          Defines a hyperparameter to be used by an algorithm.

          • Name (string) --

            The name of this hyperparameter. The name must be unique.

          • Description (string) --

            A brief description of the hyperparameter.

          • Type (string) --

            The type of this hyperparameter. The valid types are Integer , Continuous , Categorical , and FreeText .

          • Range (dict) --

            The allowed range for this hyperparameter.

            • IntegerParameterRangeSpecification (dict) --

              A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.

              • MinValue (string) --

                The minimum integer value allowed.

              • MaxValue (string) --

                The maximum integer value allowed.

            • ContinuousParameterRangeSpecification (dict) --

              A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.

              • MinValue (string) --

                The minimum floating-point value allowed.

              • MaxValue (string) --

                The maximum floating-point value allowed.

            • CategoricalParameterRangeSpecification (dict) --

              A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.

              • Values (list) --

                The allowed categories for the hyperparameter.

                • (string) --

          • IsTunable (boolean) --

            Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.

          • IsRequired (boolean) --

            Indicates whether this hyperparameter is required.

          • DefaultValue (string) --

            The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.

      • SupportedTrainingInstanceTypes (list) --

        A list of the instance types that this algorithm can use for training.

        • (string) --

      • SupportsDistributedTraining (boolean) --

        Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

      • MetricDefinitions (list) --

        A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

          • Name (string) --

            The name of the metric.

          • Regex (string) --

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • TrainingChannels (list) --

        A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

        • (dict) --

          Defines a named input source, called a channel, to be used by an algorithm.

          • Name (string) --

            The name of the channel.

          • Description (string) --

            A brief description of the channel.

          • IsRequired (boolean) --

            Indicates whether the channel is required by the algorithm.

          • SupportedContentTypes (list) --

            The supported MIME types for the data.

            • (string) --

          • SupportedCompressionTypes (list) --

            The allowed compression types, if data compression is used.

            • (string) --

          • SupportedInputModes (list) --

            The allowed input mode, either FILE or PIPE.

            In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.

            In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.

            • (string) --

      • SupportedTuningJobObjectiveMetrics (list) --

        A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

        • (dict) --

          Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

          • Type (string) --

            Whether to minimize or maximize the objective metric.

          • MetricName (string) --

            The name of the metric to use for the objective metric.

    • InferenceSpecification (dict) --

      Details about inference jobs that the algorithm runs.

      • Containers (list) --

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) --

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          • ProductId (string) --

            The AWS Marketplace product ID of the model package.

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        • (string) --

      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        • (string) --

      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --

      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --

    • ValidationSpecification (dict) --

      Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.

      • ValidationRole (string) --

        The IAM roles that Amazon SageMaker uses to run the training jobs.

      • ValidationProfiles (list) --

        An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.

        • (dict) --

          Defines a training job and a batch transform job that Amazon SageMaker runs to validate your algorithm.

          The data provided in the validation profile is made available to your buyers on AWS Marketplace.

          • ProfileName (string) --

            The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

          • TrainingJobDefinition (dict) --

            The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs to validate your algorithm.

            • TrainingInputMode (string) --

              The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see Algorithms.

              If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.

            • HyperParameters (dict) --

              The hyperparameters used for the training job.

              • (string) --

                • (string) --

            • InputDataConfig (list) --

              An array of Channel objects, each of which specifies an input source.

              • (dict) --

                A channel is a named input source that training algorithms can consume.

                • ChannelName (string) --

                  The name of the channel.

                • DataSource (dict) --

                  The location of the channel data.

                  • S3DataSource (dict) --

                    The S3 location of the data source that is associated with a channel.

                    • S3DataType (string) --

                      If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

                      If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

                      If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                    • S3Uri (string) --

                      Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                      • A key name prefix might look like this: s3://bucketname/exampleprefix .

                      • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

                    • S3DataDistributionType (string) --

                      If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                      If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                      Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                      In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                    • AttributeNames (list) --

                      A list of one or more attribute names to use that are found in a specified augmented manifest file.

                      • (string) --

                  • FileSystemDataSource (dict) --

                    The file system that is associated with a channel.

                    • FileSystemId (string) --

                      The file system id.

                    • FileSystemAccessMode (string) --

                      The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                    • FileSystemType (string) --

                      The file system type.

                    • DirectoryPath (string) --

                      The full path to the directory to associate with the channel.

                • ContentType (string) --

                  The MIME type of the data.

                • CompressionType (string) --

                  If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

                • RecordWrapperType (string) --

                  Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

                  In File mode, leave this field unset or set it to None.

                • InputMode (string) --

                  (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

                  To use a model for incremental training, choose File input model.

                • ShuffleConfig (dict) --

                  A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

                  For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

                  • Seed (integer) --

                    Determines the shuffling order in ShuffleConfig value.

            • OutputDataConfig (dict) --

              the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

              • KmsKeyId (string) --

                The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

                • // KMS Key Alias "alias/ExampleAlias"

                • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

                If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

              • S3OutputPath (string) --

                Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

            • ResourceConfig (dict) --

              The resources, including the ML compute instances and ML storage volumes, to use for model training.

              • InstanceType (string) --

                The ML compute instance type.

              • InstanceCount (integer) --

                The number of ML compute instances to use. For distributed training, provide a value greater than 1.

              • VolumeSizeInGB (integer) --

                The size of the ML storage volume that you want to provision.

                ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

                You must specify sufficient ML storage for your scenario.

                Note

                Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

                Note

                Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

                For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

              • VolumeKmsKeyId (string) --

                The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

                Note

                Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

                For a list of instance types that support local instance storage, see Instance Store Volumes.

                For more information about local instance storage encryption, see SSD Instance Store Volumes.

                The VolumeKmsKeyId can be in any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • StoppingCondition (dict) --

              Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

              To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

              • MaxRuntimeInSeconds (integer) --

                The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

              • MaxWaitTimeInSeconds (integer) --

                The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

          • TransformJobDefinition (dict) --

            The TransformJobDefinition object that describes the transform job that Amazon SageMaker runs to validate your algorithm.

            • MaxConcurrentTransforms (integer) --

              The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

            • MaxPayloadInMB (integer) --

              The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

            • BatchStrategy (string) --

              A string that determines the number of records included in a single mini-batch.

              SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

            • Environment (dict) --

              The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

              • (string) --

                • (string) --

            • TransformInput (dict) --

              A description of the input source and the way the transform job consumes it.

              • DataSource (dict) --

                Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) --

                    If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                    The following values are compatible: ManifestFile , S3Prefix

                    The following value is not compatible: AugmentedManifestFile

                  • S3Uri (string) --

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix .

                    • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

              • ContentType (string) --

                The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

              • CompressionType (string) --

                If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

              • SplitType (string) --

                The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats.

                When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

                Note

                Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

                For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

            • TransformOutput (dict) --

              Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

              • S3OutputPath (string) --

                The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

                For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

              • Accept (string) --

                The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

              • AssembleWith (string) --

                Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

              • KmsKeyId (string) --

                The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

                • // KMS Key Alias "alias/ExampleAlias"

                • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

                If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

            • TransformResources (dict) --

              Identifies the ML compute instances for the transform job.

              • InstanceType (string) --

                The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

              • InstanceCount (integer) --

                The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1 .

              • VolumeKmsKeyId (string) --

                The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • AlgorithmStatus (string) --

      The current status of the algorithm.

    • AlgorithmStatusDetails (dict) --

      Details about the current status of the algorithm.

      • ValidationStatuses (list) --

        The status of algorithm validation.

        • (dict) --

          Represents the overall status of an algorithm.

          • Name (string) --

            The name of the algorithm for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

      • ImageScanStatuses (list) --

        The status of the scan of the algorithm's Docker image container.

        • (dict) --

          Represents the overall status of an algorithm.

          • Name (string) --

            The name of the algorithm for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

    • ProductId (string) --

      The product identifier of the algorithm.

    • CertifyForMarketplace (boolean) --

      Whether the algorithm is certified to be listed in AWS Marketplace.

DescribeCompilationJob (updated) Link ¶
Changes (response)
{'OutputConfig': {'TargetDevice': {'ml_inf1'}}}

Returns information about a model compilation job.

To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

See also: AWS API Documentation

Request Syntax

client.describe_compilation_job(
    CompilationJobName='string'
)
type CompilationJobName

string

param CompilationJobName

[REQUIRED]

The name of the model compilation job that you want information about.

rtype

dict

returns

Response Syntax

{
    'CompilationJobName': 'string',
    'CompilationJobArn': 'string',
    'CompilationJobStatus': 'INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED',
    'CompilationStartTime': datetime(2015, 1, 1),
    'CompilationEndTime': datetime(2015, 1, 1),
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'FailureReason': 'string',
    'ModelArtifacts': {
        'S3ModelArtifacts': 'string'
    },
    'RoleArn': 'string',
    'InputConfig': {
        'S3Uri': 'string',
        'DataInputConfig': 'string',
        'Framework': 'TENSORFLOW'|'MXNET'|'ONNX'|'PYTORCH'|'XGBOOST'
    },
    'OutputConfig': {
        'S3OutputLocation': 'string',
        'TargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_inf1'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'rasp3b'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603'
    }
}

Response Structure

  • (dict) --

    • CompilationJobName (string) --

      The name of the model compilation job.

    • CompilationJobArn (string) --

      The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.

    • CompilationJobStatus (string) --

      The status of the model compilation job.

    • CompilationStartTime (datetime) --

      The time when the model compilation job started the CompilationJob instances.

      You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.

    • CompilationEndTime (datetime) --

      The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.

    • StoppingCondition (dict) --

      Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

      • MaxRuntimeInSeconds (integer) --

        The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

      • MaxWaitTimeInSeconds (integer) --

        The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

    • CreationTime (datetime) --

      The time that the model compilation job was created.

    • LastModifiedTime (datetime) --

      The time that the status of the model compilation job was last modified.

    • FailureReason (string) --

      If a model compilation job failed, the reason it failed.

    • ModelArtifacts (dict) --

      Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.

      • S3ModelArtifacts (string) --

        The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz .

    • RoleArn (string) --

      The Amazon Resource Name (ARN) of the model compilation job.

    • InputConfig (dict) --

      Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

      • S3Uri (string) --

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

      • DataInputConfig (string) --

        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

        • TensorFlow : You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • MXNET/ONNX : You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch : You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST : input data name and shape are not needed.

      • Framework (string) --

        Identifies the framework in which the model was trained. For example: TENSORFLOW.

    • OutputConfig (dict) --

      Information about the output location for the compiled model and the target device that the model runs on.

      • S3OutputLocation (string) --

        Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

      • TargetDevice (string) --

        Identifies the device that you want to run your model on after it has been compiled. For example: ml_c5.

DescribeEndpoint (updated) Link ¶
Changes (response)
{'DataCaptureConfig': {'CaptureStatus': 'Started | Stopped',
                       'CurrentSamplingPercentage': 'integer',
                       'DestinationS3Uri': 'string',
                       'EnableCapture': 'boolean',
                       'KmsKeyId': 'string'}}

Returns the description of an endpoint.

See also: AWS API Documentation

Request Syntax

client.describe_endpoint(
    EndpointName='string'
)
type EndpointName

string

param EndpointName

[REQUIRED]

The name of the endpoint.

rtype

dict

returns

Response Syntax

{
    'EndpointName': 'string',
    'EndpointArn': 'string',
    'EndpointConfigName': 'string',
    'ProductionVariants': [
        {
            'VariantName': 'string',
            'DeployedImages': [
                {
                    'SpecifiedImage': 'string',
                    'ResolvedImage': 'string',
                    'ResolutionTime': datetime(2015, 1, 1)
                },
            ],
            'CurrentWeight': ...,
            'DesiredWeight': ...,
            'CurrentInstanceCount': 123,
            'DesiredInstanceCount': 123
        },
    ],
    'DataCaptureConfig': {
        'EnableCapture': True|False,
        'CaptureStatus': 'Started'|'Stopped',
        'CurrentSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string'
    },
    'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed',
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --

    • EndpointName (string) --

      Name of the endpoint.

    • EndpointArn (string) --

      The Amazon Resource Name (ARN) of the endpoint.

    • EndpointConfigName (string) --

      The name of the endpoint configuration associated with this endpoint.

    • ProductionVariants (list) --

      An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.

      • (dict) --

        Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating , you get different desired and current values.

        • VariantName (string) --

          The name of the variant.

        • DeployedImages (list) --

          An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant .

          • (dict) --

            Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant.

            If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant , the path resolves to a path of the form registry/repository[@digest] . A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .

            • SpecifiedImage (string) --

              The image path you specified when you created the model.

            • ResolvedImage (string) --

              The specific digest path of the image hosted in this ProductionVariant .

            • ResolutionTime (datetime) --

              The date and time when the image path for the model resolved to the ResolvedImage

        • CurrentWeight (float) --

          The weight associated with the variant.

        • DesiredWeight (float) --

          The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.

        • CurrentInstanceCount (integer) --

          The number of instances associated with the variant.

        • DesiredInstanceCount (integer) --

          The number of instances requested in the UpdateEndpointWeightsAndCapacities request.

    • DataCaptureConfig (dict) --

      • EnableCapture (boolean) --

      • CaptureStatus (string) --

      • CurrentSamplingPercentage (integer) --

      • DestinationS3Uri (string) --

      • KmsKeyId (string) --

    • EndpointStatus (string) --

      The status of the endpoint.

      • OutOfService : Endpoint is not available to take incoming requests.

      • Creating : CreateEndpoint is executing.

      • Updating : UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.

      • SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.

      • RollingBack : Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.

      • InService : Endpoint is available to process incoming requests.

      • Deleting : DeleteEndpoint is executing.

      • Failed : Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.

    • FailureReason (string) --

      If the status of the endpoint is Failed , the reason why it failed.

    • CreationTime (datetime) --

      A timestamp that shows when the endpoint was created.

    • LastModifiedTime (datetime) --

      A timestamp that shows when the endpoint was last modified.

DescribeEndpointConfig (updated) Link ¶
Changes (response)
{'DataCaptureConfig': {'CaptureContentTypeHeader': {'CsvContentTypes': ['string'],
                                                    'JsonContentTypes': ['string']},
                       'CaptureOptions': [{'CaptureMode': 'Input | Output'}],
                       'DestinationS3Uri': 'string',
                       'EnableCapture': 'boolean',
                       'InitialSamplingPercentage': 'integer',
                       'KmsKeyId': 'string'},
 'ProductionVariants': {'InstanceType': {'ml.inf1.24xlarge',
                                         'ml.inf1.2xlarge',
                                         'ml.inf1.6xlarge',
                                         'ml.inf1.xlarge'}}}

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

See also: AWS API Documentation

Request Syntax

client.describe_endpoint_config(
    EndpointConfigName='string'
)
type EndpointConfigName

string

param EndpointConfigName

[REQUIRED]

The name of the endpoint configuration.

rtype

dict

returns

Response Syntax

{
    'EndpointConfigName': 'string',
    'EndpointConfigArn': 'string',
    'ProductionVariants': [
        {
            'VariantName': 'string',
            'ModelName': 'string',
            'InitialInstanceCount': 123,
            'InstanceType': 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge',
            'InitialVariantWeight': ...,
            'AcceleratorType': 'ml.eia1.medium'|'ml.eia1.large'|'ml.eia1.xlarge'|'ml.eia2.medium'|'ml.eia2.large'|'ml.eia2.xlarge'
        },
    ],
    'DataCaptureConfig': {
        'EnableCapture': True|False,
        'InitialSamplingPercentage': 123,
        'DestinationS3Uri': 'string',
        'KmsKeyId': 'string',
        'CaptureOptions': [
            {
                'CaptureMode': 'Input'|'Output'
            },
        ],
        'CaptureContentTypeHeader': {
            'CsvContentTypes': [
                'string',
            ],
            'JsonContentTypes': [
                'string',
            ]
        }
    },
    'KmsKeyId': 'string',
    'CreationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --

    • EndpointConfigName (string) --

      Name of the Amazon SageMaker endpoint configuration.

    • EndpointConfigArn (string) --

      The Amazon Resource Name (ARN) of the endpoint configuration.

    • ProductionVariants (list) --

      An array of ProductionVariant objects, one for each model that you want to host at this endpoint.

      • (dict) --

        Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights.

        • VariantName (string) --

          The name of the production variant.

        • ModelName (string) --

          The name of the model that you want to host. This is the name that you specified when creating the model.

        • InitialInstanceCount (integer) --

          Number of instances to launch initially.

        • InstanceType (string) --

          The ML compute instance type.

        • InitialVariantWeight (float) --

          Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

        • AcceleratorType (string) --

          The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.

    • DataCaptureConfig (dict) --

      • EnableCapture (boolean) --

      • InitialSamplingPercentage (integer) --

      • DestinationS3Uri (string) --

      • KmsKeyId (string) --

      • CaptureOptions (list) --

        • (dict) --

          • CaptureMode (string) --

      • CaptureContentTypeHeader (dict) --

        • CsvContentTypes (list) --

          • (string) --

        • JsonContentTypes (list) --

          • (string) --

    • KmsKeyId (string) --

      AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.

    • CreationTime (datetime) --

      A timestamp that shows when the endpoint configuration was created.

DescribeHyperParameterTuningJob (updated) Link ¶
Changes (response)
{'BestTrainingJob': {'TrainingJobDefinitionName': 'string'},
 'HyperParameterTuningJobConfig': {'TuningJobCompletionCriteria': {'TargetObjectiveMetricValue': 'float'}},
 'OverallBestTrainingJob': {'TrainingJobDefinitionName': 'string'},
 'TrainingJobDefinition': {'DefinitionName': 'string',
                           'HyperParameterRanges': {'CategoricalParameterRanges': [{'Name': 'string',
                                                                                    'Values': ['string']}],
                                                    'ContinuousParameterRanges': [{'MaxValue': 'string',
                                                                                   'MinValue': 'string',
                                                                                   'Name': 'string',
                                                                                   'ScalingType': 'Auto '
                                                                                                  '| '
                                                                                                  'Linear '
                                                                                                  '| '
                                                                                                  'Logarithmic '
                                                                                                  '| '
                                                                                                  'ReverseLogarithmic'}],
                                                    'IntegerParameterRanges': [{'MaxValue': 'string',
                                                                                'MinValue': 'string',
                                                                                'Name': 'string',
                                                                                'ScalingType': 'Auto '
                                                                                               '| '
                                                                                               'Linear '
                                                                                               '| '
                                                                                               'Logarithmic '
                                                                                               '| '
                                                                                               'ReverseLogarithmic'}]},
                           'TuningObjective': {'MetricName': 'string',
                                               'Type': 'Maximize | Minimize'}},
 'TrainingJobDefinitions': [{'AlgorithmSpecification': {'AlgorithmName': 'string',
                                                        'MetricDefinitions': [{'Name': 'string',
                                                                               'Regex': 'string'}],
                                                        'TrainingImage': 'string',
                                                        'TrainingInputMode': 'Pipe '
                                                                             '| '
                                                                             'File'},
                             'CheckpointConfig': {'LocalPath': 'string',
                                                  'S3Uri': 'string'},
                             'DefinitionName': 'string',
                             'EnableInterContainerTrafficEncryption': 'boolean',
                             'EnableManagedSpotTraining': 'boolean',
                             'EnableNetworkIsolation': 'boolean',
                             'HyperParameterRanges': {'CategoricalParameterRanges': [{'Name': 'string',
                                                                                      'Values': ['string']}],
                                                      'ContinuousParameterRanges': [{'MaxValue': 'string',
                                                                                     'MinValue': 'string',
                                                                                     'Name': 'string',
                                                                                     'ScalingType': 'Auto '
                                                                                                    '| '
                                                                                                    'Linear '
                                                                                                    '| '
                                                                                                    'Logarithmic '
                                                                                                    '| '
                                                                                                    'ReverseLogarithmic'}],
                                                      'IntegerParameterRanges': [{'MaxValue': 'string',
                                                                                  'MinValue': 'string',
                                                                                  'Name': 'string',
                                                                                  'ScalingType': 'Auto '
                                                                                                 '| '
                                                                                                 'Linear '
                                                                                                 '| '
                                                                                                 'Logarithmic '
                                                                                                 '| '
                                                                                                 'ReverseLogarithmic'}]},
                             'InputDataConfig': [{'ChannelName': 'string',
                                                  'CompressionType': 'None | '
                                                                     'Gzip',
                                                  'ContentType': 'string',
                                                  'DataSource': {'FileSystemDataSource': {'DirectoryPath': 'string',
                                                                                          'FileSystemAccessMode': 'rw '
                                                                                                                  '| '
                                                                                                                  'ro',
                                                                                          'FileSystemId': 'string',
                                                                                          'FileSystemType': 'EFS '
                                                                                                            '| '
                                                                                                            'FSxLustre'},
                                                                 'S3DataSource': {'AttributeNames': ['string'],
                                                                                  'S3DataDistributionType': 'FullyReplicated '
                                                                                                            '| '
                                                                                                            'ShardedByS3Key',
                                                                                  'S3DataType': 'ManifestFile '
                                                                                                '| '
                                                                                                'S3Prefix '
                                                                                                '| '
                                                                                                'AugmentedManifestFile',
                                                                                  'S3Uri': 'string'}},
                                                  'InputMode': 'Pipe | File',
                                                  'RecordWrapperType': 'None | '
                                                                       'RecordIO',
                                                  'ShuffleConfig': {'Seed': 'long'}}],
                             'OutputDataConfig': {'KmsKeyId': 'string',
                                                  'S3OutputPath': 'string'},
                             'ResourceConfig': {'InstanceCount': 'integer',
                                                'InstanceType': 'ml.m4.xlarge '
                                                                '| '
                                                                'ml.m4.2xlarge '
                                                                '| '
                                                                'ml.m4.4xlarge '
                                                                '| '
                                                                'ml.m4.10xlarge '
                                                                '| '
                                                                'ml.m4.16xlarge '
                                                                '| ml.m5.large '
                                                                '| '
                                                                'ml.m5.xlarge '
                                                                '| '
                                                                'ml.m5.2xlarge '
                                                                '| '
                                                                'ml.m5.4xlarge '
                                                                '| '
                                                                'ml.m5.12xlarge '
                                                                '| '
                                                                'ml.m5.24xlarge '
                                                                '| '
                                                                'ml.c4.xlarge '
                                                                '| '
                                                                'ml.c4.2xlarge '
                                                                '| '
                                                                'ml.c4.4xlarge '
                                                                '| '
                                                                'ml.c4.8xlarge '
                                                                '| '
                                                                'ml.p2.xlarge '
                                                                '| '
                                                                'ml.p2.8xlarge '
                                                                '| '
                                                                'ml.p2.16xlarge '
                                                                '| '
                                                                'ml.p3.2xlarge '
                                                                '| '
                                                                'ml.p3.8xlarge '
                                                                '| '
                                                                'ml.p3.16xlarge '
                                                                '| '
                                                                'ml.p3dn.24xlarge '
                                                                '| '
                                                                'ml.c5.xlarge '
                                                                '| '
                                                                'ml.c5.2xlarge '
                                                                '| '
                                                                'ml.c5.4xlarge '
                                                                '| '
                                                                'ml.c5.9xlarge '
                                                                '| '
                                                                'ml.c5.18xlarge',
                                                'VolumeKmsKeyId': 'string',
                                                'VolumeSizeInGB': 'integer'},
                             'RoleArn': 'string',
                             'StaticHyperParameters': {'string': 'string'},
                             'StoppingCondition': {'MaxRuntimeInSeconds': 'integer',
                                                   'MaxWaitTimeInSeconds': 'integer'},
                             'TuningObjective': {'MetricName': 'string',
                                                 'Type': 'Maximize | Minimize'},
                             'VpcConfig': {'SecurityGroupIds': ['string'],
                                           'Subnets': ['string']}}]}

Gets a description of a hyperparameter tuning job.

See also: AWS API Documentation

Request Syntax

client.describe_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string'
)
type HyperParameterTuningJobName

string

param HyperParameterTuningJobName

[REQUIRED]

The name of the tuning job to describe.

rtype

dict

returns

Response Syntax

{
    'HyperParameterTuningJobName': 'string',
    'HyperParameterTuningJobArn': 'string',
    'HyperParameterTuningJobConfig': {
        'Strategy': 'Bayesian'|'Random',
        'HyperParameterTuningJobObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'ResourceLimits': {
            'MaxNumberOfTrainingJobs': 123,
            'MaxParallelTrainingJobs': 123
        },
        'ParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'TrainingJobEarlyStoppingType': 'Off'|'Auto',
        'TuningJobCompletionCriteria': {
            'TargetObjectiveMetricValue': ...
        }
    },
    'TrainingJobDefinition': {
        'DefinitionName': 'string',
        'TuningObjective': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string'
        },
        'HyperParameterRanges': {
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MinValue': 'string',
                    'MaxValue': 'string',
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ]
        },
        'StaticHyperParameters': {
            'string': 'string'
        },
        'AlgorithmSpecification': {
            'TrainingImage': 'string',
            'TrainingInputMode': 'Pipe'|'File',
            'AlgorithmName': 'string',
            'MetricDefinitions': [
                {
                    'Name': 'string',
                    'Regex': 'string'
                },
            ]
        },
        'RoleArn': 'string',
        'InputDataConfig': [
            {
                'ChannelName': 'string',
                'DataSource': {
                    'S3DataSource': {
                        'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                        'S3Uri': 'string',
                        'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                        'AttributeNames': [
                            'string',
                        ]
                    },
                    'FileSystemDataSource': {
                        'FileSystemId': 'string',
                        'FileSystemAccessMode': 'rw'|'ro',
                        'FileSystemType': 'EFS'|'FSxLustre',
                        'DirectoryPath': 'string'
                    }
                },
                'ContentType': 'string',
                'CompressionType': 'None'|'Gzip',
                'RecordWrapperType': 'None'|'RecordIO',
                'InputMode': 'Pipe'|'File',
                'ShuffleConfig': {
                    'Seed': 123
                }
            },
        ],
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'OutputDataConfig': {
            'KmsKeyId': 'string',
            'S3OutputPath': 'string'
        },
        'ResourceConfig': {
            'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
            'InstanceCount': 123,
            'VolumeSizeInGB': 123,
            'VolumeKmsKeyId': 'string'
        },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 123,
            'MaxWaitTimeInSeconds': 123
        },
        'EnableNetworkIsolation': True|False,
        'EnableInterContainerTrafficEncryption': True|False,
        'EnableManagedSpotTraining': True|False,
        'CheckpointConfig': {
            'S3Uri': 'string',
            'LocalPath': 'string'
        }
    },
    'TrainingJobDefinitions': [
        {
            'DefinitionName': 'string',
            'TuningObjective': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string'
            },
            'HyperParameterRanges': {
                'IntegerParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'ContinuousParameterRanges': [
                    {
                        'Name': 'string',
                        'MinValue': 'string',
                        'MaxValue': 'string',
                        'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                    },
                ],
                'CategoricalParameterRanges': [
                    {
                        'Name': 'string',
                        'Values': [
                            'string',
                        ]
                    },
                ]
            },
            'StaticHyperParameters': {
                'string': 'string'
            },
            'AlgorithmSpecification': {
                'TrainingImage': 'string',
                'TrainingInputMode': 'Pipe'|'File',
                'AlgorithmName': 'string',
                'MetricDefinitions': [
                    {
                        'Name': 'string',
                        'Regex': 'string'
                    },
                ]
            },
            'RoleArn': 'string',
            'InputDataConfig': [
                {
                    'ChannelName': 'string',
                    'DataSource': {
                        'S3DataSource': {
                            'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                            'S3Uri': 'string',
                            'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                            'AttributeNames': [
                                'string',
                            ]
                        },
                        'FileSystemDataSource': {
                            'FileSystemId': 'string',
                            'FileSystemAccessMode': 'rw'|'ro',
                            'FileSystemType': 'EFS'|'FSxLustre',
                            'DirectoryPath': 'string'
                        }
                    },
                    'ContentType': 'string',
                    'CompressionType': 'None'|'Gzip',
                    'RecordWrapperType': 'None'|'RecordIO',
                    'InputMode': 'Pipe'|'File',
                    'ShuffleConfig': {
                        'Seed': 123
                    }
                },
            ],
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            },
            'OutputDataConfig': {
                'KmsKeyId': 'string',
                'S3OutputPath': 'string'
            },
            'ResourceConfig': {
                'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
                'InstanceCount': 123,
                'VolumeSizeInGB': 123,
                'VolumeKmsKeyId': 'string'
            },
            'StoppingCondition': {
                'MaxRuntimeInSeconds': 123,
                'MaxWaitTimeInSeconds': 123
            },
            'EnableNetworkIsolation': True|False,
            'EnableInterContainerTrafficEncryption': True|False,
            'EnableManagedSpotTraining': True|False,
            'CheckpointConfig': {
                'S3Uri': 'string',
                'LocalPath': 'string'
            }
        },
    ],
    'HyperParameterTuningJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping',
    'CreationTime': datetime(2015, 1, 1),
    'HyperParameterTuningEndTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'TrainingJobStatusCounters': {
        'Completed': 123,
        'InProgress': 123,
        'RetryableError': 123,
        'NonRetryableError': 123,
        'Stopped': 123
    },
    'ObjectiveStatusCounters': {
        'Succeeded': 123,
        'Pending': 123,
        'Failed': 123
    },
    'BestTrainingJob': {
        'TrainingJobDefinitionName': 'string',
        'TrainingJobName': 'string',
        'TrainingJobArn': 'string',
        'TuningJobName': 'string',
        'CreationTime': datetime(2015, 1, 1),
        'TrainingStartTime': datetime(2015, 1, 1),
        'TrainingEndTime': datetime(2015, 1, 1),
        'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'TunedHyperParameters': {
            'string': 'string'
        },
        'FailureReason': 'string',
        'FinalHyperParameterTuningJobObjectiveMetric': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string',
            'Value': ...
        },
        'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
    },
    'OverallBestTrainingJob': {
        'TrainingJobDefinitionName': 'string',
        'TrainingJobName': 'string',
        'TrainingJobArn': 'string',
        'TuningJobName': 'string',
        'CreationTime': datetime(2015, 1, 1),
        'TrainingStartTime': datetime(2015, 1, 1),
        'TrainingEndTime': datetime(2015, 1, 1),
        'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
        'TunedHyperParameters': {
            'string': 'string'
        },
        'FailureReason': 'string',
        'FinalHyperParameterTuningJobObjectiveMetric': {
            'Type': 'Maximize'|'Minimize',
            'MetricName': 'string',
            'Value': ...
        },
        'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
    },
    'WarmStartConfig': {
        'ParentHyperParameterTuningJobs': [
            {
                'HyperParameterTuningJobName': 'string'
            },
        ],
        'WarmStartType': 'IdenticalDataAndAlgorithm'|'TransferLearning'
    },
    'FailureReason': 'string'
}

Response Structure

  • (dict) --

    • HyperParameterTuningJobName (string) --

      The name of the tuning job.

    • HyperParameterTuningJobArn (string) --

      The Amazon Resource Name (ARN) of the tuning job.

    • HyperParameterTuningJobConfig (dict) --

      The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.

      • Strategy (string) --

        Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian . To randomly search, set it to Random . For information about search strategies, see How Hyperparameter Tuning Works.

      • HyperParameterTuningJobObjective (dict) --

        The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

        • Type (string) --

          Whether to minimize or maximize the objective metric.

        • MetricName (string) --

          The name of the metric to use for the objective metric.

      • ResourceLimits (dict) --

        The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

        • MaxNumberOfTrainingJobs (integer) --

          The maximum number of training jobs that a hyperparameter tuning job can launch.

        • MaxParallelTrainingJobs (integer) --

          The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.

      • ParameterRanges (dict) --

        The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

        • IntegerParameterRanges (list) --

          The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

            • Name (string) --

              The name of the hyperparameter to search.

            • MinValue (string) --

              The minimum value of the hyperparameter to search.

            • MaxValue (string) --

              The maximum value of the hyperparameter to search.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

        • ContinuousParameterRanges (list) --

          The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of continuous hyperparameters to tune.

            • Name (string) --

              The name of the continuous hyperparameter to tune.

            • MinValue (string) --

              The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

            • MaxValue (string) --

              The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

              ReverseLogarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

        • CategoricalParameterRanges (list) --

          The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of categorical hyperparameters to tune.

            • Name (string) --

              The name of the categorical hyperparameter to tune.

            • Values (list) --

              A list of the categories for the hyperparameter.

              • (string) --

      • TrainingJobEarlyStoppingType (string) --

        Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF ):

        OFF

        Training jobs launched by the hyperparameter tuning job do not use early stopping.

        AUTO

        Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

      • TuningJobCompletionCriteria (dict) --

        The tuning job's completion criteria.

        • TargetObjectiveMetricValue (float) --

          The objective metric's value.

    • TrainingJobDefinition (dict) --

      The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.

      • DefinitionName (string) --

        The job definition name.

      • TuningObjective (dict) --

        Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

        • Type (string) --

          Whether to minimize or maximize the objective metric.

        • MetricName (string) --

          The name of the metric to use for the objective metric.

      • HyperParameterRanges (dict) --

        Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

        Note

        You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.

        • IntegerParameterRanges (list) --

          The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

            • Name (string) --

              The name of the hyperparameter to search.

            • MinValue (string) --

              The minimum value of the hyperparameter to search.

            • MaxValue (string) --

              The maximum value of the hyperparameter to search.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

        • ContinuousParameterRanges (list) --

          The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of continuous hyperparameters to tune.

            • Name (string) --

              The name of the continuous hyperparameter to tune.

            • MinValue (string) --

              The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

            • MaxValue (string) --

              The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

              Auto

              Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have only values greater than 0.

              ReverseLogarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

        • CategoricalParameterRanges (list) --

          The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

          • (dict) --

            A list of categorical hyperparameters to tune.

            • Name (string) --

              The name of the categorical hyperparameter to tune.

            • Values (list) --

              A list of the categories for the hyperparameter.

              • (string) --

      • StaticHyperParameters (dict) --

        Specifies the values of hyperparameters that do not change for the tuning job.

        • (string) --

          • (string) --

      • AlgorithmSpecification (dict) --

        The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

        • TrainingImage (string) --

          The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

        • TrainingInputMode (string) --

          The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

          If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.

          For more information about input modes, see Algorithms.

        • AlgorithmName (string) --

          The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

        • MetricDefinitions (list) --

          An array of MetricDefinition objects that specify the metrics that the algorithm emits.

          • (dict) --

            Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

            • Name (string) --

              The name of the metric.

            • Regex (string) --

              A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • RoleArn (string) --

        The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

      • InputDataConfig (list) --

        An array of Channel objects that specify the input for the training jobs that the tuning job launches.

        • (dict) --

          A channel is a named input source that training algorithms can consume.

          • ChannelName (string) --

            The name of the channel.

          • DataSource (dict) --

            The location of the channel data.

            • S3DataSource (dict) --

              The S3 location of the data source that is associated with a channel.

              • S3DataType (string) --

                If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

                If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

                If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

              • S3Uri (string) --

                Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                • A key name prefix might look like this: s3://bucketname/exampleprefix .

                • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

              • S3DataDistributionType (string) --

                If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

              • AttributeNames (list) --

                A list of one or more attribute names to use that are found in a specified augmented manifest file.

                • (string) --

            • FileSystemDataSource (dict) --

              The file system that is associated with a channel.

              • FileSystemId (string) --

                The file system id.

              • FileSystemAccessMode (string) --

                The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

              • FileSystemType (string) --

                The file system type.

              • DirectoryPath (string) --

                The full path to the directory to associate with the channel.

          • ContentType (string) --

            The MIME type of the data.

          • CompressionType (string) --

            If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

          • RecordWrapperType (string) --

            Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

            In File mode, leave this field unset or set it to None.

          • InputMode (string) --

            (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

            To use a model for incremental training, choose File input model.

          • ShuffleConfig (dict) --

            A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

            For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

            • Seed (integer) --

              Determines the shuffling order in ShuffleConfig value.

      • VpcConfig (dict) --

        The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

          • (string) --

        • Subnets (list) --

          The ID of the subnets in the VPC to which you want to connect your training job or model.

          Note

          Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

          • (string) --

      • OutputDataConfig (dict) --

        Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

        • KmsKeyId (string) --

          The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • // KMS Key Alias "alias/ExampleAlias"

          • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

          If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

          The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

        • S3OutputPath (string) --

          Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

      • ResourceConfig (dict) --

        The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

        Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

        • InstanceType (string) --

          The ML compute instance type.

        • InstanceCount (integer) --

          The number of ML compute instances to use. For distributed training, provide a value greater than 1.

        • VolumeSizeInGB (integer) --

          The size of the ML storage volume that you want to provision.

          ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

          You must specify sufficient ML storage for your scenario.

          Note

          Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

          Note

          Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

          For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

        • VolumeKmsKeyId (string) --

          The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

          Note

          Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

          For a list of instance types that support local instance storage, see Instance Store Volumes.

          For more information about local instance storage encryption, see SSD Instance Store Volumes.

          The VolumeKmsKeyId can be in any of the following formats:

          • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

          • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • StoppingCondition (dict) --

        Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

        • MaxRuntimeInSeconds (integer) --

          The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

        • MaxWaitTimeInSeconds (integer) --

          The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

      • EnableNetworkIsolation (boolean) --

        Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

        Note

        The Semantic Segmentation built-in algorithm does not support network isolation.

      • EnableInterContainerTrafficEncryption (boolean) --

        To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

      • EnableManagedSpotTraining (boolean) --

        A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

      • CheckpointConfig (dict) --

        Contains information about the output location for managed spot training checkpoint data.

        • S3Uri (string) --

          Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

        • LocalPath (string) --

          (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

    • TrainingJobDefinitions (list) --

      • (dict) --

        Defines the training jobs launched by a hyperparameter tuning job.

        • DefinitionName (string) --

          The job definition name.

        • TuningObjective (dict) --

          Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

          • Type (string) --

            Whether to minimize or maximize the objective metric.

          • MetricName (string) --

            The name of the metric to use for the objective metric.

        • HyperParameterRanges (dict) --

          Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

          Note

          You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.

          • IntegerParameterRanges (list) --

            The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.

            • (dict) --

              For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

              • Name (string) --

                The name of the hyperparameter to search.

              • MinValue (string) --

                The minimum value of the hyperparameter to search.

              • MaxValue (string) --

                The maximum value of the hyperparameter to search.

              • ScalingType (string) --

                The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

                Auto

                Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

                Linear

                Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

                Logarithmic

                Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

                Logarithmic scaling works only for ranges that have only values greater than 0.

          • ContinuousParameterRanges (list) --

            The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.

            • (dict) --

              A list of continuous hyperparameters to tune.

              • Name (string) --

                The name of the continuous hyperparameter to tune.

              • MinValue (string) --

                The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValue for tuning.

              • MaxValue (string) --

                The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.

              • ScalingType (string) --

                The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

                Auto

                Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

                Linear

                Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

                Logarithmic

                Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

                Logarithmic scaling works only for ranges that have only values greater than 0.

                ReverseLogarithmic

                Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

                Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

          • CategoricalParameterRanges (list) --

            The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.

            • (dict) --

              A list of categorical hyperparameters to tune.

              • Name (string) --

                The name of the categorical hyperparameter to tune.

              • Values (list) --

                A list of the categories for the hyperparameter.

                • (string) --

        • StaticHyperParameters (dict) --

          Specifies the values of hyperparameters that do not change for the tuning job.

          • (string) --

            • (string) --

        • AlgorithmSpecification (dict) --

          The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.

          • TrainingImage (string) --

            The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • TrainingInputMode (string) --

            The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container.

            If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.

            For more information about input modes, see Algorithms.

          • AlgorithmName (string) --

            The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage .

          • MetricDefinitions (list) --

            An array of MetricDefinition objects that specify the metrics that the algorithm emits.

            • (dict) --

              Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

              • Name (string) --

                The name of the metric.

              • Regex (string) --

                A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

        • RoleArn (string) --

          The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

        • InputDataConfig (list) --

          An array of Channel objects that specify the input for the training jobs that the tuning job launches.

          • (dict) --

            A channel is a named input source that training algorithms can consume.

            • ChannelName (string) --

              The name of the channel.

            • DataSource (dict) --

              The location of the channel data.

              • S3DataSource (dict) --

                The S3 location of the data source that is associated with a channel.

                • S3DataType (string) --

                  If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

                  If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

                  If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

                • S3Uri (string) --

                  Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                  • A key name prefix might look like this: s3://bucketname/exampleprefix .

                  • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

                • S3DataDistributionType (string) --

                  If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

                  If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

                  Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

                  In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

                • AttributeNames (list) --

                  A list of one or more attribute names to use that are found in a specified augmented manifest file.

                  • (string) --

              • FileSystemDataSource (dict) --

                The file system that is associated with a channel.

                • FileSystemId (string) --

                  The file system id.

                • FileSystemAccessMode (string) --

                  The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

                • FileSystemType (string) --

                  The file system type.

                • DirectoryPath (string) --

                  The full path to the directory to associate with the channel.

            • ContentType (string) --

              The MIME type of the data.

            • CompressionType (string) --

              If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

            • RecordWrapperType (string) --

              Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

              In File mode, leave this field unset or set it to None.

            • InputMode (string) --

              (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

              To use a model for incremental training, choose File input model.

            • ShuffleConfig (dict) --

              A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

              For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

              • Seed (integer) --

                Determines the shuffling order in ShuffleConfig value.

        • VpcConfig (dict) --

          The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --

          • Subnets (list) --

            The ID of the subnets in the VPC to which you want to connect your training job or model.

            Note

            Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

            • (string) --

        • OutputDataConfig (dict) --

          Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.

          • KmsKeyId (string) --

            The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • // KMS Key Alias "alias/ExampleAlias"

            • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

            If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

            The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

          • S3OutputPath (string) --

            Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

        • ResourceConfig (dict) --

          The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

          Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

          • InstanceType (string) --

            The ML compute instance type.

          • InstanceCount (integer) --

            The number of ML compute instances to use. For distributed training, provide a value greater than 1.

          • VolumeSizeInGB (integer) --

            The size of the ML storage volume that you want to provision.

            ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

            You must specify sufficient ML storage for your scenario.

            Note

            Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

            Note

            Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

            For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

          • VolumeKmsKeyId (string) --

            The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

            Note

            Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

            For a list of instance types that support local instance storage, see Instance Store Volumes.

            For more information about local instance storage encryption, see SSD Instance Store Volumes.

            The VolumeKmsKeyId can be in any of the following formats:

            • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

            • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • StoppingCondition (dict) --

          Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

          • MaxRuntimeInSeconds (integer) --

            The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

          • MaxWaitTimeInSeconds (integer) --

            The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

        • EnableNetworkIsolation (boolean) --

          Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

          Note

          The Semantic Segmentation built-in algorithm does not support network isolation.

        • EnableInterContainerTrafficEncryption (boolean) --

          To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

        • EnableManagedSpotTraining (boolean) --

          A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

        • CheckpointConfig (dict) --

          Contains information about the output location for managed spot training checkpoint data.

          • S3Uri (string) --

            Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

          • LocalPath (string) --

            (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

    • HyperParameterTuningJobStatus (string) --

      The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.

    • CreationTime (datetime) --

      The date and time that the tuning job started.

    • HyperParameterTuningEndTime (datetime) --

      The date and time that the tuning job ended.

    • LastModifiedTime (datetime) --

      The date and time that the status of the tuning job was modified.

    • TrainingJobStatusCounters (dict) --

      The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.

      • Completed (integer) --

        The number of completed training jobs launched by the hyperparameter tuning job.

      • InProgress (integer) --

        The number of in-progress training jobs launched by a hyperparameter tuning job.

      • RetryableError (integer) --

        The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.

      • NonRetryableError (integer) --

        The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.

      • Stopped (integer) --

        The number of training jobs launched by a hyperparameter tuning job that were manually stopped.

    • ObjectiveStatusCounters (dict) --

      The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.

      • Succeeded (integer) --

        The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

      • Pending (integer) --

        The number of training jobs that are in progress and pending evaluation of their final objective metric.

      • Failed (integer) --

        The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

    • BestTrainingJob (dict) --

      A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.

      • TrainingJobDefinitionName (string) --

        The training job definition name.

      • TrainingJobName (string) --

        The name of the training job.

      • TrainingJobArn (string) --

        The Amazon Resource Name (ARN) of the training job.

      • TuningJobName (string) --

        The HyperParameter tuning job that launched the training job.

      • CreationTime (datetime) --

        The date and time that the training job was created.

      • TrainingStartTime (datetime) --

        The date and time that the training job started.

      • TrainingEndTime (datetime) --

        Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.

      • TrainingJobStatus (string) --

        The status of the training job.

      • TunedHyperParameters (dict) --

        A list of the hyperparameters for which you specified ranges to search.

        • (string) --

          • (string) --

      • FailureReason (string) --

        The reason that the training job failed.

      • FinalHyperParameterTuningJobObjectiveMetric (dict) --

        The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

        • Type (string) --

          Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

        • MetricName (string) --

          The name of the objective metric.

        • Value (float) --

          The value of the objective metric.

      • ObjectiveStatus (string) --

        The status of the objective metric for the training job:

        • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

        • Pending: The training job is in progress and evaluation of its final objective metric is pending.

        • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

    • OverallBestTrainingJob (dict) --

      If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM , this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.

      • TrainingJobDefinitionName (string) --

        The training job definition name.

      • TrainingJobName (string) --

        The name of the training job.

      • TrainingJobArn (string) --

        The Amazon Resource Name (ARN) of the training job.

      • TuningJobName (string) --

        The HyperParameter tuning job that launched the training job.

      • CreationTime (datetime) --

        The date and time that the training job was created.

      • TrainingStartTime (datetime) --

        The date and time that the training job started.

      • TrainingEndTime (datetime) --

        Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.

      • TrainingJobStatus (string) --

        The status of the training job.

      • TunedHyperParameters (dict) --

        A list of the hyperparameters for which you specified ranges to search.

        • (string) --

          • (string) --

      • FailureReason (string) --

        The reason that the training job failed.

      • FinalHyperParameterTuningJobObjectiveMetric (dict) --

        The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

        • Type (string) --

          Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

        • MetricName (string) --

          The name of the objective metric.

        • Value (float) --

          The value of the objective metric.

      • ObjectiveStatus (string) --

        The status of the objective metric for the training job:

        • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

        • Pending: The training job is in progress and evaluation of its final objective metric is pending.

        • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

    • WarmStartConfig (dict) --

      The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

      • ParentHyperParameterTuningJobs (list) --

        An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point.

        Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.

        • (dict) --

          A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

          • HyperParameterTuningJobName (string) --

            The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

      • WarmStartType (string) --

        Specifies one of the following:

        IDENTICAL_DATA_AND_ALGORITHM

        The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

        TRANSFER_LEARNING

        The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.

    • FailureReason (string) --

      If the tuning job failed, the reason it failed.

DescribeModelPackage (updated) Link ¶
Changes (response)
{'InferenceSpecification': {'SupportedRealtimeInferenceInstanceTypes': {'ml.inf1.24xlarge',
                                                                        'ml.inf1.2xlarge',
                                                                        'ml.inf1.6xlarge',
                                                                        'ml.inf1.xlarge'}}}

Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.

To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.

See also: AWS API Documentation

Request Syntax

client.describe_model_package(
    ModelPackageName='string'
)
type ModelPackageName

string

param ModelPackageName

[REQUIRED]

The name of the model package to describe.

rtype

dict

returns

Response Syntax

{
    'ModelPackageName': 'string',
    'ModelPackageArn': 'string',
    'ModelPackageDescription': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'InferenceSpecification': {
        'Containers': [
            {
                'ContainerHostname': 'string',
                'Image': 'string',
                'ImageDigest': 'string',
                'ModelDataUrl': 'string',
                'ProductId': 'string'
            },
        ],
        'SupportedTransformInstanceTypes': [
            'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
        ],
        'SupportedRealtimeInferenceInstanceTypes': [
            'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge',
        ],
        'SupportedContentTypes': [
            'string',
        ],
        'SupportedResponseMIMETypes': [
            'string',
        ]
    },
    'SourceAlgorithmSpecification': {
        'SourceAlgorithms': [
            {
                'ModelDataUrl': 'string',
                'AlgorithmName': 'string'
            },
        ]
    },
    'ValidationSpecification': {
        'ValidationRole': 'string',
        'ValidationProfiles': [
            {
                'ProfileName': 'string',
                'TransformJobDefinition': {
                    'MaxConcurrentTransforms': 123,
                    'MaxPayloadInMB': 123,
                    'BatchStrategy': 'MultiRecord'|'SingleRecord',
                    'Environment': {
                        'string': 'string'
                    },
                    'TransformInput': {
                        'DataSource': {
                            'S3DataSource': {
                                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                                'S3Uri': 'string'
                            }
                        },
                        'ContentType': 'string',
                        'CompressionType': 'None'|'Gzip',
                        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
                    },
                    'TransformOutput': {
                        'S3OutputPath': 'string',
                        'Accept': 'string',
                        'AssembleWith': 'None'|'Line',
                        'KmsKeyId': 'string'
                    },
                    'TransformResources': {
                        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
                        'InstanceCount': 123,
                        'VolumeKmsKeyId': 'string'
                    }
                }
            },
        ]
    },
    'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting',
    'ModelPackageStatusDetails': {
        'ValidationStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ],
        'ImageScanStatuses': [
            {
                'Name': 'string',
                'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed',
                'FailureReason': 'string'
            },
        ]
    },
    'CertifyForMarketplace': True|False
}

Response Structure

  • (dict) --

    • ModelPackageName (string) --

      The name of the model package being described.

    • ModelPackageArn (string) --

      The Amazon Resource Name (ARN) of the model package.

    • ModelPackageDescription (string) --

      A brief summary of the model package.

    • CreationTime (datetime) --

      A timestamp specifying when the model package was created.

    • InferenceSpecification (dict) --

      Details about inference jobs that can be run with models based on this model package.

      • Containers (list) --

        The Amazon ECR registry path of the Docker image that contains the inference code.

        • (dict) --

          Describes the Docker container for the model package.

          • ContainerHostname (string) --

            The DNS host name for the Docker container.

          • Image (string) --

            The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

            If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

          • ImageDigest (string) --

            An MD5 hash of the training algorithm that identifies the Docker image used for training.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          • ProductId (string) --

            The AWS Marketplace product ID of the model package.

      • SupportedTransformInstanceTypes (list) --

        A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.

        • (string) --

      • SupportedRealtimeInferenceInstanceTypes (list) --

        A list of the instance types that are used to generate inferences in real-time.

        • (string) --

      • SupportedContentTypes (list) --

        The supported MIME types for the input data.

        • (string) --

      • SupportedResponseMIMETypes (list) --

        The supported MIME types for the output data.

        • (string) --

    • SourceAlgorithmSpecification (dict) --

      Details about the algorithm that was used to create the model package.

      • SourceAlgorithms (list) --

        A list of the algorithms that were used to create a model package.

        • (dict) --

          Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.

          • ModelDataUrl (string) --

            The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive ( .tar.gz suffix).

          • AlgorithmName (string) --

            The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.

    • ValidationSpecification (dict) --

      Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.

      • ValidationRole (string) --

        The IAM roles to be used for the validation of the model package.

      • ValidationProfiles (list) --

        An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.

        • (dict) --

          Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.

          The data provided in the validation profile is made available to your buyers on AWS Marketplace.

          • ProfileName (string) --

            The name of the profile for the model package.

          • TransformJobDefinition (dict) --

            The TransformJobDefinition object that describes the transform job used for the validation of the model package.

            • MaxConcurrentTransforms (integer) --

              The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.

            • MaxPayloadInMB (integer) --

              The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).

            • BatchStrategy (string) --

              A string that determines the number of records included in a single mini-batch.

              SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.

            • Environment (dict) --

              The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

              • (string) --

                • (string) --

            • TransformInput (dict) --

              A description of the input source and the way the transform job consumes it.

              • DataSource (dict) --

                Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

                • S3DataSource (dict) --

                  The S3 location of the data source that is associated with a channel.

                  • S3DataType (string) --

                    If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

                    If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

                    The following values are compatible: ManifestFile , S3Prefix

                    The following value is not compatible: AugmentedManifestFile

                  • S3Uri (string) --

                    Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

                    • A key name prefix might look like this: s3://bucketname/exampleprefix .

                    • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

              • ContentType (string) --

                The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

              • CompressionType (string) --

                If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

              • SplitType (string) --

                The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats.

                When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

                Note

                Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

                For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

            • TransformOutput (dict) --

              Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

              • S3OutputPath (string) --

                The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

                For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

              • Accept (string) --

                The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

              • AssembleWith (string) --

                Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

              • KmsKeyId (string) --

                The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

                • // KMS Key Alias "alias/ExampleAlias"

                • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

                If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

                The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

            • TransformResources (dict) --

              Identifies the ML compute instances for the transform job.

              • InstanceType (string) --

                The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

              • InstanceCount (integer) --

                The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1 .

              • VolumeKmsKeyId (string) --

                The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:

                • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

                • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • ModelPackageStatus (string) --

      The current status of the model package.

    • ModelPackageStatusDetails (dict) --

      Details about the current status of the model package.

      • ValidationStatuses (list) --

        The validation status of the model package.

        • (dict) --

          Represents the overall status of a model package.

          • Name (string) --

            The name of the model package for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

      • ImageScanStatuses (list) --

        The status of the scan of the Docker image container for the model package.

        • (dict) --

          Represents the overall status of a model package.

          • Name (string) --

            The name of the model package for which the overall status is being reported.

          • Status (string) --

            The current status.

          • FailureReason (string) --

            if the overall status is Failed , the reason for the failure.

    • CertifyForMarketplace (boolean) --

      Whether the model package is certified for listing on AWS Marketplace.

DescribeTrainingJob (updated) Link ¶
Changes (response)
{'AlgorithmSpecification': {'EnableSageMakerMetricsTimeSeries': 'boolean'},
 'AutoMLJobArn': 'string',
 'DebugHookConfig': {'CollectionConfigurations': [{'CollectionName': 'string',
                                                   'CollectionParameters': {'string': 'string'}}],
                     'HookParameters': {'string': 'string'},
                     'LocalPath': 'string',
                     'S3OutputPath': 'string'},
 'DebugRuleConfigurations': [{'InstanceType': 'ml.t3.medium | ml.t3.large | '
                                              'ml.t3.xlarge | ml.t3.2xlarge | '
                                              'ml.m4.xlarge | ml.m4.2xlarge | '
                                              'ml.m4.4xlarge | ml.m4.10xlarge '
                                              '| ml.m4.16xlarge | ml.c4.xlarge '
                                              '| ml.c4.2xlarge | ml.c4.4xlarge '
                                              '| ml.c4.8xlarge | ml.p2.xlarge '
                                              '| ml.p2.8xlarge | '
                                              'ml.p2.16xlarge | ml.p3.2xlarge '
                                              '| ml.p3.8xlarge | '
                                              'ml.p3.16xlarge | ml.c5.xlarge | '
                                              'ml.c5.2xlarge | ml.c5.4xlarge | '
                                              'ml.c5.9xlarge | ml.c5.18xlarge '
                                              '| ml.m5.large | ml.m5.xlarge | '
                                              'ml.m5.2xlarge | ml.m5.4xlarge | '
                                              'ml.m5.12xlarge | ml.m5.24xlarge '
                                              '| ml.r5.large | ml.r5.xlarge | '
                                              'ml.r5.2xlarge | ml.r5.4xlarge | '
                                              'ml.r5.8xlarge | ml.r5.12xlarge '
                                              '| ml.r5.16xlarge | '
                                              'ml.r5.24xlarge',
                              'LocalPath': 'string',
                              'RuleConfigurationName': 'string',
                              'RuleEvaluatorImage': 'string',
                              'RuleParameters': {'string': 'string'},
                              'S3OutputPath': 'string',
                              'VolumeSizeInGB': 'integer'}],
 'DebugRuleEvaluationStatuses': [{'LastModifiedTime': 'timestamp',
                                  'RuleConfigurationName': 'string',
                                  'RuleEvaluationJobArn': 'string',
                                  'RuleEvaluationStatus': 'InProgress | '
                                                          'NoIssuesFound | '
                                                          'IssuesFound | Error '
                                                          '| Stopping | '
                                                          'Stopped',
                                  'StatusDetails': 'string'}],
 'ExperimentConfig': {'ExperimentName': 'string',
                      'TrialComponentDisplayName': 'string',
                      'TrialName': 'string'},
 'TensorBoardOutputConfig': {'LocalPath': 'string', 'S3OutputPath': 'string'}}

Returns information about a training job.

See also: AWS API Documentation

Request Syntax

client.describe_training_job(
    TrainingJobName='string'
)
type TrainingJobName

string

param TrainingJobName

[REQUIRED]

The name of the training job.

rtype

dict

returns

Response Syntax

{
    'TrainingJobName': 'string',
    'TrainingJobArn': 'string',
    'TuningJobArn': 'string',
    'LabelingJobArn': 'string',
    'AutoMLJobArn': 'string',
    'ModelArtifacts': {
        'S3ModelArtifacts': 'string'
    },
    'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'SecondaryStatus': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded',
    'FailureReason': 'string',
    'HyperParameters': {
        'string': 'string'
    },
    'AlgorithmSpecification': {
        'TrainingImage': 'string',
        'AlgorithmName': 'string',
        'TrainingInputMode': 'Pipe'|'File',
        'MetricDefinitions': [
            {
                'Name': 'string',
                'Regex': 'string'
            },
        ],
        'EnableSageMakerMetricsTimeSeries': True|False
    },
    'RoleArn': 'string',
    'InputDataConfig': [
        {
            'ChannelName': 'string',
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                    'S3Uri': 'string',
                    'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key',
                    'AttributeNames': [
                        'string',
                    ]
                },
                'FileSystemDataSource': {
                    'FileSystemId': 'string',
                    'FileSystemAccessMode': 'rw'|'ro',
                    'FileSystemType': 'EFS'|'FSxLustre',
                    'DirectoryPath': 'string'
                }
            },
            'ContentType': 'string',
            'CompressionType': 'None'|'Gzip',
            'RecordWrapperType': 'None'|'RecordIO',
            'InputMode': 'Pipe'|'File',
            'ShuffleConfig': {
                'Seed': 123
            }
        },
    ],
    'OutputDataConfig': {
        'KmsKeyId': 'string',
        'S3OutputPath': 'string'
    },
    'ResourceConfig': {
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge',
        'InstanceCount': 123,
        'VolumeSizeInGB': 123,
        'VolumeKmsKeyId': 'string'
    },
    'VpcConfig': {
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    'StoppingCondition': {
        'MaxRuntimeInSeconds': 123,
        'MaxWaitTimeInSeconds': 123
    },
    'CreationTime': datetime(2015, 1, 1),
    'TrainingStartTime': datetime(2015, 1, 1),
    'TrainingEndTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'SecondaryStatusTransitions': [
        {
            'Status': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded',
            'StartTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'StatusMessage': 'string'
        },
    ],
    'FinalMetricDataList': [
        {
            'MetricName': 'string',
            'Value': ...,
            'Timestamp': datetime(2015, 1, 1)
        },
    ],
    'EnableNetworkIsolation': True|False,
    'EnableInterContainerTrafficEncryption': True|False,
    'EnableManagedSpotTraining': True|False,
    'CheckpointConfig': {
        'S3Uri': 'string',
        'LocalPath': 'string'
    },
    'TrainingTimeInSeconds': 123,
    'BillableTimeInSeconds': 123,
    'DebugHookConfig': {
        'LocalPath': 'string',
        'S3OutputPath': 'string',
        'HookParameters': {
            'string': 'string'
        },
        'CollectionConfigurations': [
            {
                'CollectionName': 'string',
                'CollectionParameters': {
                    'string': 'string'
                }
            },
        ]
    },
    'ExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string'
    },
    'DebugRuleConfigurations': [
        {
            'RuleConfigurationName': 'string',
            'LocalPath': 'string',
            'S3OutputPath': 'string',
            'RuleEvaluatorImage': 'string',
            'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge',
            'VolumeSizeInGB': 123,
            'RuleParameters': {
                'string': 'string'
            }
        },
    ],
    'TensorBoardOutputConfig': {
        'LocalPath': 'string',
        'S3OutputPath': 'string'
    },
    'DebugRuleEvaluationStatuses': [
        {
            'RuleConfigurationName': 'string',
            'RuleEvaluationJobArn': 'string',
            'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped',
            'StatusDetails': 'string',
            'LastModifiedTime': datetime(2015, 1, 1)
        },
    ]
}

Response Structure

  • (dict) --

    • TrainingJobName (string) --

      Name of the model training job.

    • TrainingJobArn (string) --

      The Amazon Resource Name (ARN) of the training job.

    • TuningJobArn (string) --

      The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.

    • AutoMLJobArn (string) --

    • ModelArtifacts (dict) --

      Information about the Amazon S3 location that is configured for storing model artifacts.

      • S3ModelArtifacts (string) --

        The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz .

    • TrainingJobStatus (string) --

      The status of the training job.

      Amazon SageMaker provides the following training job statuses:

      • InProgress - The training is in progress.

      • Completed - The training job has completed.

      • Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.

      • Stopping - The training job is stopping.

      • Stopped - The training job has stopped.

      For more detailed information, see SecondaryStatus .

    • SecondaryStatus (string) --

      Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition.

      Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:

      InProgress

      • Starting - Starting the training job.

      • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.

      • Training - Training is in progress.

      • Interrupted - The job stopped because the managed spot training instances were interrupted.

      • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

        Completed

      • Completed - The training job has completed.

        Failed

      • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .

        Stopped

      • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.

      • MaxWaitTmeExceeded - The job stopped because it exceeded the maximum allowed wait time.

      • Stopped - The training job has stopped.

        Stopping

      • Stopping - Stopping the training job.

      Warning

      Valid values for SecondaryStatus are subject to change.

      We no longer support the following secondary statuses:

      • LaunchingMLInstances

      • PreparingTrainingStack

      • DownloadingTrainingImage

    • FailureReason (string) --

      If the training job failed, the reason it failed.

    • HyperParameters (dict) --

      Algorithm-specific parameters.

      • (string) --

        • (string) --

    • AlgorithmSpecification (dict) --

      Information about the algorithm used for training, and algorithm metadata.

      • TrainingImage (string) --

        The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

      • AlgorithmName (string) --

        The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage .

      • TrainingInputMode (string) --

        The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.

        In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.

        For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.

      • MetricDefinitions (list) --

        A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.

        • (dict) --

          Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

          • Name (string) --

            The name of the metric.

          • Regex (string) --

            A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.

      • EnableSageMakerMetricsTimeSeries (boolean) --

        To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:

        • You use one of the Amazon SageMaker built-in algorithms

        • You use one of the following prebuilt Amazon SageMaker Docker images:

          • Tensorflow

          • MXNet

          • PyTorch

        • You specify at least one MetricDefinition

    • RoleArn (string) --

      The AWS Identity and Access Management (IAM) role configured for the training job.

    • InputDataConfig (list) --

      An array of Channel objects that describes each data input channel.

      • (dict) --

        A channel is a named input source that training algorithms can consume.

        • ChannelName (string) --

          The name of the channel.

        • DataSource (dict) --

          The location of the channel data.

          • S3DataSource (dict) --

            The S3 location of the data source that is associated with a channel.

            • S3DataType (string) --

              If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.

              If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.

              If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .

            • S3Uri (string) --

              Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

              • A key name prefix might look like this: s3://bucketname/exampleprefix .

              • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: The preceding JSON matches the following s3Uris : [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

            • S3DataDistributionType (string) --

              If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .

              If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.

              Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.

              In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.

            • AttributeNames (list) --

              A list of one or more attribute names to use that are found in a specified augmented manifest file.

              • (string) --

          • FileSystemDataSource (dict) --

            The file system that is associated with a channel.

            • FileSystemId (string) --

              The file system id.

            • FileSystemAccessMode (string) --

              The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.

            • FileSystemType (string) --

              The file system type.

            • DirectoryPath (string) --

              The full path to the directory to associate with the channel.

        • ContentType (string) --

          The MIME type of the data.

        • CompressionType (string) --

          If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.

        • RecordWrapperType (string) --

          Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.

          In File mode, leave this field unset or set it to None.

        • InputMode (string) --

          (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.

          To use a model for incremental training, choose File input model.

        • ShuffleConfig (dict) --

          A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.

          For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

          • Seed (integer) --

            Determines the shuffling order in ShuffleConfig value.

    • OutputDataConfig (dict) --

      The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.

      • KmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • // KMS Key Alias "alias/ExampleAlias"

        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

      • S3OutputPath (string) --

        Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .

    • ResourceConfig (dict) --

      Resources, including ML compute instances and ML storage volumes, that are configured for model training.

      • InstanceType (string) --

        The ML compute instance type.

      • InstanceCount (integer) --

        The number of ML compute instances to use. For distributed training, provide a value greater than 1.

      • VolumeSizeInGB (integer) --

        The size of the ML storage volume that you want to provision.

        ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

        You must specify sufficient ML storage for your scenario.

        Note

        Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

        Note

        Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

        For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

      • VolumeKmsKeyId (string) --

        The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

        Note

        Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

        For a list of instance types that support local instance storage, see Instance Store Volumes.

        For more information about local instance storage encryption, see SSD Instance Store Volumes.

        The VolumeKmsKeyId can be in any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • VpcConfig (dict) --

      A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) --

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --

      • Subnets (list) --

        The ID of the subnets in the VPC to which you want to connect your training job or model.

        Note

        Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.

        • (string) --

    • StoppingCondition (dict) --

      Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

      To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

      • MaxRuntimeInSeconds (integer) --

        The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.

      • MaxWaitTimeInSeconds (integer) --

        The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .

    • CreationTime (datetime) --

      A timestamp that indicates when the training job was created.

    • TrainingStartTime (datetime) --

      Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime . The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.

    • TrainingEndTime (datetime) --

      Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.

    • LastModifiedTime (datetime) --

      A timestamp that indicates when the status of the training job was last modified.

    • SecondaryStatusTransitions (list) --

      A history of all of the secondary statuses that the training job has transitioned through.

      • (dict) --

        An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.

        • Status (string) --

          Contains a secondary status information from a training job.

          Status might be one of the following secondary statuses:

          InProgress

          • Starting - Starting the training job.

          • Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.

          • Training - Training is in progress.

          • Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.

            Completed

          • Completed - The training job has completed.

            Failed

          • Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .

            Stopped

          • MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.

          • Stopped - The training job has stopped.

            Stopping

          • Stopping - Stopping the training job.

          We no longer support the following secondary statuses:

          • LaunchingMLInstances

          • PreparingTrainingStack

          • DownloadingTrainingImage

        • StartTime (datetime) --

          A timestamp that shows when the training job transitioned to the current secondary status state.

        • EndTime (datetime) --

          A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.

        • StatusMessage (string) --

          A detailed description of the progress within a secondary status.

          Amazon SageMaker provides secondary statuses and status messages that apply to each of them:

          Starting

          • Starting the training job.

          • Launching requested ML instances.

          • Insufficient capacity error from EC2 while launching instances, retrying!

          • Launched instance was unhealthy, replacing it!

          • Preparing the instances for training.

            Training

          • Downloading the training image.

          • Training image download completed. Training in progress.

          Warning

          Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.

          To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:

          • TrainingJobStatus - InProgress

          • SecondaryStatus - Training

          • StatusMessage - Downloading the training image

    • FinalMetricDataList (list) --

      A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.

      • (dict) --

        The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.

        • MetricName (string) --

          The name of the metric.

        • Value (float) --

          The value of the metric.

        • Timestamp (datetime) --

          The date and time that the algorithm emitted the metric.

    • EnableNetworkIsolation (boolean) --

      If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True . If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

      Note

      The Semantic Segmentation built-in algorithm does not support network isolation.

    • EnableInterContainerTrafficEncryption (boolean) --

      To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.

    • EnableManagedSpotTraining (boolean) --

      A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).

    • CheckpointConfig (dict) --

      Contains information about the output location for managed spot training checkpoint data.

      • S3Uri (string) --

        Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .

      • LocalPath (string) --

        (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .

    • TrainingTimeInSeconds (integer) --

      The training time in seconds.

    • BillableTimeInSeconds (integer) --

      The billable time in seconds.

      You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100 . For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.

    • DebugHookConfig (dict) --

      Configuration information for the debug hook parameters, collection configuration, and storage paths.

      • LocalPath (string) --

        Path to local storage location for tensors. Defaults to /opt/ml/output/tensors/ .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for tensors.

      • HookParameters (dict) --

        Configuration information for the debug hook parameters.

        • (string) --

          • (string) --

      • CollectionConfigurations (list) --

        Configuration information for tensor collections.

        • (dict) --

          Configuration information for tensor collections.

          • CollectionName (string) --

            The name of the tensor collection.

          • CollectionParameters (dict) --

            Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .

            • (string) --

              • (string) --

    • ExperimentConfig (dict) --

      Configuration for the experiment.

      • ExperimentName (string) --

        The name of the experiment.

      • TrialName (string) --

        The name of the trial.

      • TrialComponentDisplayName (string) --

        Display name for the trial component.

    • DebugRuleConfigurations (list) --

      Configuration information for debugging rules.

      • (dict) --

        Configuration information for debugging rules.

        • RuleConfigurationName (string) --

          The name of the rule configuration. It must be unique relative to other rule configuration names.

        • LocalPath (string) --

          Path to local storage location for rules. Defaults to /opt/ml/processing/output/rule/ .

        • S3OutputPath (string) --

          Path to Amazon S3 storage location for rules.

        • RuleEvaluatorImage (string) --

          The Amazon Elastic Container (ECR) Image for the managed rule evaluation.

        • InstanceType (string) --

          The instance type to deploy for a training job.

        • VolumeSizeInGB (integer) --

          The size, in GB, of the ML storage volume attached to the notebook instance.

        • RuleParameters (dict) --

          Runtime configuration for rule container.

          • (string) --

            • (string) --

    • TensorBoardOutputConfig (dict) --

      Configuration of storage locations for TensorBoard output.

      • LocalPath (string) --

        Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .

      • S3OutputPath (string) --

        Path to Amazon S3 storage location for TensorBoard output.

    • DebugRuleEvaluationStatuses (list) --

      Status about the debug rule evaluation.

      • (dict) --

        Information about the status of the rule evaluation.

        • RuleConfigurationName (string) --

          The name of the rule configuration

        • RuleEvaluationJobArn (string) --

          The Amazon Resource Name (ARN) of the rule evaluation job.

        • RuleEvaluationStatus (string) --

          Status of the rule evaluation.

        • StatusDetails (string) --

          Details from the rule evaluation.

        • LastModifiedTime (datetime) --

          Timestamp when the rule evaluation status was last modified.

DescribeTransformJob (updated) Link ¶
Changes (response)
{'AutoMLJobArn': 'string',
 'ExperimentConfig': {'ExperimentName': 'string',
                      'TrialComponentDisplayName': 'string',
                      'TrialName': 'string'}}

Returns information about a transform job.

See also: AWS API Documentation

Request Syntax

client.describe_transform_job(
    TransformJobName='string'
)
type TransformJobName

string

param TransformJobName

[REQUIRED]

The name of the transform job that you want to view details of.

rtype

dict

returns

Response Syntax

{
    'TransformJobName': 'string',
    'TransformJobArn': 'string',
    'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'FailureReason': 'string',
    'ModelName': 'string',
    'MaxConcurrentTransforms': 123,
    'MaxPayloadInMB': 123,
    'BatchStrategy': 'MultiRecord'|'SingleRecord',
    'Environment': {
        'string': 'string'
    },
    'TransformInput': {
        'DataSource': {
            'S3DataSource': {
                'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile',
                'S3Uri': 'string'
            }
        },
        'ContentType': 'string',
        'CompressionType': 'None'|'Gzip',
        'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord'
    },
    'TransformOutput': {
        'S3OutputPath': 'string',
        'Accept': 'string',
        'AssembleWith': 'None'|'Line',
        'KmsKeyId': 'string'
    },
    'TransformResources': {
        'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge',
        'InstanceCount': 123,
        'VolumeKmsKeyId': 'string'
    },
    'CreationTime': datetime(2015, 1, 1),
    'TransformStartTime': datetime(2015, 1, 1),
    'TransformEndTime': datetime(2015, 1, 1),
    'LabelingJobArn': 'string',
    'AutoMLJobArn': 'string',
    'DataProcessing': {
        'InputFilter': 'string',
        'OutputFilter': 'string',
        'JoinSource': 'Input'|'None'
    },
    'ExperimentConfig': {
        'ExperimentName': 'string',
        'TrialName': 'string',
        'TrialComponentDisplayName': 'string'
    }
}

Response Structure

  • (dict) --

    • TransformJobName (string) --

      The name of the transform job.

    • TransformJobArn (string) --

      The Amazon Resource Name (ARN) of the transform job.

    • TransformJobStatus (string) --

      The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.

    • FailureReason (string) --

      If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.

    • ModelName (string) --

      The name of the model used in the transform job.

    • MaxConcurrentTransforms (integer) --

      The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.

    • MaxPayloadInMB (integer) --

      The maximum payload size, in MB, used in the transform job.

    • BatchStrategy (string) --

      Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

      To enable the batch strategy, you must set SplitType to Line , RecordIO , or TFRecord .

    • Environment (dict) --

      The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

      • (string) --

        • (string) --

    • TransformInput (dict) --

      Describes the dataset to be transformed and the Amazon S3 location where it is stored.

      • DataSource (dict) --

        Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.

        • S3DataSource (dict) --

          The S3 location of the data source that is associated with a channel.

          • S3DataType (string) --

            If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.

            If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.

            The following values are compatible: ManifestFile , S3Prefix

            The following value is not compatible: AugmentedManifestFile

          • S3Uri (string) --

            Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:

            • A key name prefix might look like this: s3://bucketname/exampleprefix .

            • A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following s3Uris : s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.

      • ContentType (string) --

        The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.

      • CompressionType (string) --

        If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None .

      • SplitType (string) --

        The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None , which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats.

        When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord , Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord , Amazon SageMaker sends individual records in each request.

        Note

        Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord . Padding is not removed if the value of BatchStrategy is set to MultiRecord .

        For more information about RecordIO , see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord , see Consuming TFRecord data in the TensorFlow documentation.

    • TransformOutput (dict) --

      Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

      • S3OutputPath (string) --

        The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix .

        For every S3 object used as input for the transform job, batch transform stores the transformed data with an . out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an . out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.

      • Accept (string) --

        The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.

      • AssembleWith (string) --

        Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None . To add a newline character at the end of every transformed record, specify Line .

      • KmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • // KMS Key Alias "alias/ExampleAlias"

        • // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .

    • TransformResources (dict) --

      Describes the resources, including ML instance types and ML instance count, to use for the transform job.

      • InstanceType (string) --

        The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.

      • InstanceCount (integer) --

        The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1 .

      • VolumeKmsKeyId (string) --

        The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:

        • // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

        • // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • CreationTime (datetime) --

      A timestamp that shows when the transform Job was created.

    • TransformStartTime (datetime) --

      Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime .

    • TransformEndTime (datetime) --

      Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime .

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.

    • AutoMLJobArn (string) --

    • DataProcessing (dict) --

      The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

      • InputFilter (string) --

        A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $ .

        Examples: "$" , "$[1:]" , "$.features"

      • OutputFilter (string) --

        A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value, $ . If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.

        Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"

      • JoinSource (string) --

        Specifies the source of the data to join with the transformed data. The valid values are None and Input . The default value is None , which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input .

        For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput . The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput .

        For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file.

    • ExperimentConfig (dict) --

      Configuration for the experiment.

      • ExperimentName (string) --

        The name of the experiment.

      • TrialName (string) --

        The name of the trial.

      • TrialComponentDisplayName (string) --

        Display name for the trial component.

GetSearchSuggestions (updated) Link ¶
Changes (request)
{'Resource': {'ExperimentTrial', 'Experiment', 'ExperimentTrialComponent'}}

An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters , Tags , and Metrics .

See also: AWS API Documentation

Request Syntax

client.get_search_suggestions(
    Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent',
    SuggestionQuery={
        'PropertyNameQuery': {
            'PropertyNameHint': 'string'
        }
    }
)
type Resource

string

param Resource

[REQUIRED]

The name of the Amazon SageMaker resource to Search for. The only valid Resource value is TrainingJob .

type SuggestionQuery

dict

param SuggestionQuery

Limits the property names that are included in the response.

  • PropertyNameQuery (dict) --

    A type of SuggestionQuery . Defines a property name hint. Only property names that match the specified hint are included in the response.

    • PropertyNameHint (string) -- [REQUIRED]

      Text that is part of a property's name. The property names of hyperparameter, metric, and tag key names that begin with the specified text in the PropertyNameHint .

rtype

dict

returns

Response Syntax

{
    'PropertyNameSuggestions': [
        {
            'PropertyName': 'string'
        },
    ]
}

Response Structure

  • (dict) --

    • PropertyNameSuggestions (list) --

      A list of property names for a Resource that match a SuggestionQuery .

      • (dict) --

        A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.

        • PropertyName (string) --

          A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.

ListCompilationJobs (updated) Link ¶
Changes (response)
{'CompilationJobSummaries': {'CompilationTargetDevice': {'ml_inf1'}}}

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.

See also: AWS API Documentation

Request Syntax

client.list_compilation_jobs(
    NextToken='string',
    MaxResults=123,
    CreationTimeAfter=datetime(2015, 1, 1),
    CreationTimeBefore=datetime(2015, 1, 1),
    LastModifiedTimeAfter=datetime(2015, 1, 1),
    LastModifiedTimeBefore=datetime(2015, 1, 1),
    NameContains='string',
    StatusEquals='INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED',
    SortBy='Name'|'CreationTime'|'Status',
    SortOrder='Ascending'|'Descending'
)
type NextToken

string

param NextToken

If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken . To retrieve the next set of model compilation jobs, use the token in the next request.

type MaxResults

integer

param MaxResults

The maximum number of model compilation jobs to return in the response.

type CreationTimeAfter

datetime

param CreationTimeAfter

A filter that returns the model compilation jobs that were created after a specified time.

type CreationTimeBefore

datetime

param CreationTimeBefore

A filter that returns the model compilation jobs that were created before a specified time.

type LastModifiedTimeAfter

datetime

param LastModifiedTimeAfter

A filter that returns the model compilation jobs that were modified after a specified time.

type LastModifiedTimeBefore

datetime

param LastModifiedTimeBefore

A filter that returns the model compilation jobs that were modified before a specified time.

type NameContains

string

param NameContains

A filter that returns the model compilation jobs whose name contains a specified string.

type StatusEquals

string

param StatusEquals

A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.

type SortBy

string

param SortBy

The field by which to sort results. The default is CreationTime .

type SortOrder

string

param SortOrder

The sort order for results. The default is Ascending .

rtype

dict

returns

Response Syntax

{
    'CompilationJobSummaries': [
        {
            'CompilationJobName': 'string',
            'CompilationJobArn': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'CompilationStartTime': datetime(2015, 1, 1),
            'CompilationEndTime': datetime(2015, 1, 1),
            'CompilationTargetDevice': 'lambda'|'ml_m4'|'ml_m5'|'ml_c4'|'ml_c5'|'ml_p2'|'ml_p3'|'ml_inf1'|'jetson_tx1'|'jetson_tx2'|'jetson_nano'|'rasp3b'|'deeplens'|'rk3399'|'rk3288'|'aisage'|'sbe_c'|'qcs605'|'qcs603',
            'LastModifiedTime': datetime(2015, 1, 1),
            'CompilationJobStatus': 'INPROGRESS'|'COMPLETED'|'FAILED'|'STARTING'|'STOPPING'|'STOPPED'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • CompilationJobSummaries (list) --

      An array of CompilationJobSummary objects, each describing a model compilation job.

      • (dict) --

        A summary of a model compilation job.

        • CompilationJobName (string) --

          The name of the model compilation job that you want a summary for.

        • CompilationJobArn (string) --

          The Amazon Resource Name (ARN) of the model compilation job.

        • CreationTime (datetime) --

          The time when the model compilation job was created.

        • CompilationStartTime (datetime) --

          The time when the model compilation job started.

        • CompilationEndTime (datetime) --

          The time when the model compilation job completed.

        • CompilationTargetDevice (string) --

          The type of device that the model will run on after compilation has completed.

        • LastModifiedTime (datetime) --

          The time when the model compilation job was last modified.

        • CompilationJobStatus (string) --

          The status of the model compilation job.

    • NextToken (string) --

      If the response is truncated, Amazon SageMaker returns this NextToken . To retrieve the next set of model compilation jobs, use this token in the next request.

ListTrainingJobsForHyperParameterTuningJob (updated) Link ¶
Changes (response)
{'TrainingJobSummaries': {'TrainingJobDefinitionName': 'string'}}

Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.

See also: AWS API Documentation

Request Syntax

client.list_training_jobs_for_hyper_parameter_tuning_job(
    HyperParameterTuningJobName='string',
    NextToken='string',
    MaxResults=123,
    StatusEquals='InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    SortBy='Name'|'CreationTime'|'Status'|'FinalObjectiveMetricValue',
    SortOrder='Ascending'|'Descending'
)
type HyperParameterTuningJobName

string

param HyperParameterTuningJobName

[REQUIRED]

The name of the tuning job whose training jobs you want to list.

type NextToken

string

param NextToken

If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken . To retrieve the next set of training jobs, use the token in the next request.

type MaxResults

integer

param MaxResults

The maximum number of training jobs to return. The default value is 10.

type StatusEquals

string

param StatusEquals

A filter that returns only training jobs with the specified status.

type SortBy

string

param SortBy

The field to sort results by. The default is Name .

If the value of this field is FinalObjectiveMetricValue , any training jobs that did not return an objective metric are not listed.

type SortOrder

string

param SortOrder

The sort order for results. The default is Ascending .

rtype

dict

returns

Response Syntax

{
    'TrainingJobSummaries': [
        {
            'TrainingJobDefinitionName': 'string',
            'TrainingJobName': 'string',
            'TrainingJobArn': 'string',
            'TuningJobName': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'TrainingStartTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
            'TunedHyperParameters': {
                'string': 'string'
            },
            'FailureReason': 'string',
            'FinalHyperParameterTuningJobObjectiveMetric': {
                'Type': 'Maximize'|'Minimize',
                'MetricName': 'string',
                'Value': ...
            },
            'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TrainingJobSummaries (list) --

      A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.

      • (dict) --

        Specifies summary information about a training job.

        • TrainingJobDefinitionName (string) --

          The training job definition name.

        • TrainingJobName (string) --

          The name of the training job.

        • TrainingJobArn (string) --

          The Amazon Resource Name (ARN) of the training job.

        • TuningJobName (string) --

          The HyperParameter tuning job that launched the training job.

        • CreationTime (datetime) --

          The date and time that the training job was created.

        • TrainingStartTime (datetime) --

          The date and time that the training job started.

        • TrainingEndTime (datetime) --

          Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.

        • TrainingJobStatus (string) --

          The status of the training job.

        • TunedHyperParameters (dict) --

          A list of the hyperparameters for which you specified ranges to search.

          • (string) --

            • (string) --

        • FailureReason (string) --

          The reason that the training job failed.

        • FinalHyperParameterTuningJobObjectiveMetric (dict) --

          The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.

          • Type (string) --

            Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.

          • MetricName (string) --

            The name of the objective metric.

          • Value (float) --

            The value of the objective metric.

        • ObjectiveStatus (string) --

          The status of the objective metric for the training job:

          • Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.

          • Pending: The training job is in progress and evaluation of its final objective metric is pending.

          • Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.

    • NextToken (string) --

      If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken . To retrieve the next set of training jobs, use the token in the next request.