Amazon SageMaker Service

2022/06/23 - Amazon SageMaker Service - 6 updated api methods

Changes  SageMaker Ground Truth now supports Virtual Private Cloud. Customers can launch labeling jobs and access to their private workforce in VPC mode.

CreateLabelingJob (updated) Link ¶
Changes (request)
{'LabelingJobAlgorithmsConfig': {'LabelingJobResourceConfig': {'VpcConfig': {'SecurityGroupIds': ['string'],
                                                                             'Subnets': ['string']}}}}

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.

You can select your workforce from one of three providers:

  • A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.

  • One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas.

  • The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.

You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.

The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.

The output can be used as the manifest file for another labeling job or as training data for your machine learning models.

You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in ManifestS3Uri have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active ( InProgress ) streaming labeling job in real time. To learn how to create a static labeling job, see Create a Labeling Job (API) in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see Create a Streaming Labeling Job.

See also: AWS API Documentation

Request Syntax

client.create_labeling_job(
    LabelingJobName='string',
    LabelAttributeName='string',
    InputConfig={
        'DataSource': {
            'S3DataSource': {
                'ManifestS3Uri': 'string'
            },
            'SnsDataSource': {
                'SnsTopicArn': 'string'
            }
        },
        'DataAttributes': {
            'ContentClassifiers': [
                'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
            ]
        }
    },
    OutputConfig={
        'S3OutputPath': 'string',
        'KmsKeyId': 'string',
        'SnsTopicArn': 'string'
    },
    RoleArn='string',
    LabelCategoryConfigS3Uri='string',
    StoppingConditions={
        'MaxHumanLabeledObjectCount': 123,
        'MaxPercentageOfInputDatasetLabeled': 123
    },
    LabelingJobAlgorithmsConfig={
        'LabelingJobAlgorithmSpecificationArn': 'string',
        'InitialActiveLearningModelArn': 'string',
        'LabelingJobResourceConfig': {
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        }
    },
    HumanTaskConfig={
        'WorkteamArn': 'string',
        'UiConfig': {
            'UiTemplateS3Uri': 'string',
            'HumanTaskUiArn': 'string'
        },
        'PreHumanTaskLambdaArn': 'string',
        'TaskKeywords': [
            'string',
        ],
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'NumberOfHumanWorkersPerDataObject': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'MaxConcurrentTaskCount': 123,
        'AnnotationConsolidationConfig': {
            'AnnotationConsolidationLambdaArn': 'string'
        },
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type LabelingJobName

string

param LabelingJobName

[REQUIRED]

The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. LabelingJobName is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.

type LabelAttributeName

string

param LabelAttributeName

[REQUIRED]

The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The LabelAttributeName must meet the following requirements.

  • The name can't end with "-metadata".

  • If you are using one of the following built-in task types, the attribute name must end with "-ref". If the task type you are using is not listed below, the attribute name must not end with "-ref".

    • Image semantic segmentation ( SemanticSegmentation) , and adjustment ( AdjustmentSemanticSegmentation ) and verification ( VerificationSemanticSegmentation ) labeling jobs for this task type.

    • Video frame object detection ( VideoObjectDetection ), and adjustment and verification ( AdjustmentVideoObjectDetection ) labeling jobs for this task type.

    • Video frame object tracking ( VideoObjectTracking ), and adjustment and verification ( AdjustmentVideoObjectTracking ) labeling jobs for this task type.

    • 3D point cloud semantic segmentation ( 3DPointCloudSemanticSegmentation ), and adjustment and verification ( Adjustment3DPointCloudSemanticSegmentation ) labeling jobs for this task type.

    • 3D point cloud object tracking ( 3DPointCloudObjectTracking ), and adjustment and verification ( Adjustment3DPointCloudObjectTracking ) labeling jobs for this task type.

Warning

If you are creating an adjustment or verification labeling job, you must use a different LabelAttributeName than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.

type InputConfig

dict

param InputConfig

[REQUIRED]

Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

You must specify at least one of the following: S3DataSource or SnsDataSource .

  • Use SnsDataSource to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.

  • Use S3DataSource to specify an input manifest file for both streaming and one-time labeling jobs. Adding an S3DataSource is optional if you use SnsDataSource to create a streaming labeling job.

If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use ContentClassifiers to specify that your data is free of personally identifiable information and adult content.

  • DataSource (dict) -- [REQUIRED]

    The location of the input data.

    • S3DataSource (dict) --

      The Amazon S3 location of the input data objects.

      • ManifestS3Uri (string) -- [REQUIRED]

        The Amazon S3 location of the manifest file that describes the input data objects.

        The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source . The value of the keys are interpreted as follows:

        • source-ref : The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.

        • source : The source of the object is the value. Use this value when the object is a text value.

        If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

    • SnsDataSource (dict) --

      An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

      • SnsTopicArn (string) -- [REQUIRED]

        The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

  • DataAttributes (dict) --

    Attributes of the data specified by the customer.

    • ContentClassifiers (list) --

      Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

      • (string) --

type OutputConfig

dict

param OutputConfig

[REQUIRED]

The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.

  • S3OutputPath (string) -- [REQUIRED]

    The Amazon S3 location to write output data.

  • KmsKeyId (string) --

    The Amazon Web Services Key Management Service ID of the key used to encrypt the output data, if any.

    If you provide your own KMS key ID, you must add the required permissions to your KMS key described in Encrypt Output Data and Storage Volume with Amazon Web Services KMS.

    If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon Web Services KMS key for Amazon S3 for your role's account to encrypt your output data.

    If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

  • SnsTopicArn (string) --

    An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a SnsTopicArn if you want to do real time chaining to another streaming job and receive an Amazon SNS notifications each time a data object is submitted by a worker.

    If you provide an SnsTopicArn in OutputConfig , when workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here.

    To learn more, see Receive Output Data from a Streaming Labeling Job.

type RoleArn

string

param RoleArn

[REQUIRED]

The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.

type LabelCategoryConfigS3Uri

string

param LabelCategoryConfigS3Uri

The S3 URI of the file, referred to as a label category configuration file , that defines the categories used to label the data objects.

For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs.

For named entity recognition jobs, in addition to "labels" , you must provide worker instructions in the label category configuration file using the "instructions" parameter: "instructions": {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>", "fullInstruction":"<p>Add additional instructions.</p>"} . For details and an example, see Create a Named Entity Recognition Labeling Job (API).

For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing label_1 , label_2 , ... , label_n with your label categories.

{

"document-version": "2018-11-28",

"labels": [{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}]

}

Note the following about the label category configuration file:

  • For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.

  • Each label category must be unique, you cannot specify duplicate label categories.

  • If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include auditLabelAttributeName in the label category configuration. Use this parameter to enter the LabelAttributeName of the labeling job you want to adjust or verify annotations of.

type StoppingConditions

dict

param StoppingConditions

A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.

  • MaxHumanLabeledObjectCount (integer) --

    The maximum number of objects that can be labeled by human workers.

  • MaxPercentageOfInputDatasetLabeled (integer) --

    The maximum number of input data objects that should be labeled.

type LabelingJobAlgorithmsConfig

dict

param LabelingJobAlgorithmsConfig

Configures the information required to perform automated data labeling.

  • LabelingJobAlgorithmSpecificationArn (string) -- [REQUIRED]

    Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

    • Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification

    • Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification

    • Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection

    • Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation

  • InitialActiveLearningModelArn (string) --

    At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

  • LabelingJobResourceConfig (dict) --

    Provides configuration information for a labeling job.

    • VolumeKmsKeyId (string) --

      The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling.

      You can only specify a VolumeKmsKeyId when you create a labeling job with automated data labeling enabled using the API operation CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption.

      The VolumeKmsKeyId can be any of the following formats:

      • KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

      • Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • VpcConfig (dict) --

      Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

      • SecurityGroupIds (list) -- [REQUIRED]

        The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

        • (string) --

      • Subnets (list) -- [REQUIRED]

        The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

        • (string) --

type HumanTaskConfig

dict

param HumanTaskConfig

[REQUIRED]

Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).

  • WorkteamArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

  • UiConfig (dict) -- [REQUIRED]

    Information about the user interface that workers use to complete the labeling task.

    • UiTemplateS3Uri (string) --

      The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

    • HumanTaskUiArn (string) --

      The ARN of the worker task template used to render the worker UI and tools for labeling job tasks.

      Use this parameter when you are creating a labeling job for named entity recognition, 3D point cloud and video frame labeling jobs. Use your labeling job task type to select one of the following ARNs and use it with this parameter when you create a labeling job. Replace aws-region with the Amazon Web Services Region you are creating your labeling job in. For example, replace aws-region with us-west-1 if you create a labeling job in US West (N. California).

      Named Entity Recognition

      Use the following HumanTaskUiArn for named entity recognition labeling jobs:

      arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition

      3D Point Cloud HumanTaskUiArns

      Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.

      • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection

      Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.

      • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking

      Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.

      • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation

      Video Frame HumanTaskUiArns

      Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs.

      • arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection

      Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs.

      • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking

  • PreHumanTaskLambdaArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

    For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation Lambda.

    Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox

    Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass

    Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel

    Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation

    Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass

    Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel

    Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition

    Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass

    Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection

    Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking

    3D Point Cloud Modalities

    Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.

    3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection

    3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking

    3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation

    Use the following ARNs for Label Verification and Adjustment Jobs

    Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

    Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox

    Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox

    Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation

    Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation

    Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection

    Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking

    3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection

    3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking

    3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.

    • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation

    • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation

  • TaskKeywords (list) --

    Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

    • (string) --

  • TaskTitle (string) -- [REQUIRED]

    A title for the task for your human workers.

  • TaskDescription (string) -- [REQUIRED]

    A description of the task for your human workers.

  • NumberOfHumanWorkersPerDataObject (integer) -- [REQUIRED]

    The number of human workers that will label an object.

  • TaskTimeLimitInSeconds (integer) -- [REQUIRED]

    The amount of time that a worker has to complete a task.

    If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).

    If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:

    • For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).

    • For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.

  • TaskAvailabilityLifetimeInSeconds (integer) --

    The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.

    • If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).

    • If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.

  • MaxConcurrentTaskCount (integer) --

    Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects.

  • AnnotationConsolidationConfig (dict) -- [REQUIRED]

    Configures how labels are consolidated across human workers.

    • AnnotationConsolidationLambdaArn (string) -- [REQUIRED]

      The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data.

      This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn . For custom labeling workflows, see Post-annotation Lambda.

      Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox

      Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass

      Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel

      Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation

      Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass

      Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel

      Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition

      Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass

      Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection

      Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking

      3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection

      3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking

      3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation

      Use the following ARNs for Label Verification and Adjustment Jobs

      Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

      Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation

      Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation

      Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox

      Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox

      Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection

      Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking

      3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection

      3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking

      3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation

      • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation

  • PublicWorkforceTaskPrice (dict) --

    The price that you pay for each task performed by an Amazon Mechanical Turk worker.

    • AmountInUsd (dict) --

      Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

      • Dollars (integer) --

        The whole number of dollars in the amount.

      • Cents (integer) --

        The fractional portion, in cents, of the amount.

      • TenthFractionsOfACent (integer) --

        Fractions of a cent, in tenths.

type Tags

list

param Tags

An array of key/value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide .

  • (dict) --

    A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

    You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

    For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

    • Key (string) -- [REQUIRED]

      The tag key. Tag keys must be unique per resource.

    • Value (string) -- [REQUIRED]

      The tag value.

rtype

dict

returns

Response Syntax

{
    'LabelingJobArn': 'string'
}

Response Structure

  • (dict) --

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.

CreateWorkforce (updated) Link ¶
Changes (request)
{'WorkforceVpcConfig': {'SecurityGroupIds': ['string'],
                        'Subnets': ['string'],
                        'VpcId': 'string'}}

Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account.

If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.

To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig . You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito).

To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig . Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).

See also: AWS API Documentation

Request Syntax

client.create_workforce(
    CognitoConfig={
        'UserPool': 'string',
        'ClientId': 'string'
    },
    OidcConfig={
        'ClientId': 'string',
        'ClientSecret': 'string',
        'Issuer': 'string',
        'AuthorizationEndpoint': 'string',
        'TokenEndpoint': 'string',
        'UserInfoEndpoint': 'string',
        'LogoutEndpoint': 'string',
        'JwksUri': 'string'
    },
    SourceIpConfig={
        'Cidrs': [
            'string',
        ]
    },
    WorkforceName='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    WorkforceVpcConfig={
        'VpcId': 'string',
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    }
)
type CognitoConfig

dict

param CognitoConfig

Use this parameter to configure an Amazon Cognito private workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

Do not use OidcConfig if you specify values for CognitoConfig .

  • UserPool (string) -- [REQUIRED]

    A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

  • ClientId (string) -- [REQUIRED]

    The client ID for your Amazon Cognito user pool.

type OidcConfig

dict

param OidcConfig

Use this parameter to configure a private workforce using your own OIDC Identity Provider.

Do not use CognitoConfig if you specify values for OidcConfig .

  • ClientId (string) -- [REQUIRED]

    The OIDC IdP client ID used to configure your private workforce.

  • ClientSecret (string) -- [REQUIRED]

    The OIDC IdP client secret used to configure your private workforce.

  • Issuer (string) -- [REQUIRED]

    The OIDC IdP issuer used to configure your private workforce.

  • AuthorizationEndpoint (string) -- [REQUIRED]

    The OIDC IdP authorization endpoint used to configure your private workforce.

  • TokenEndpoint (string) -- [REQUIRED]

    The OIDC IdP token endpoint used to configure your private workforce.

  • UserInfoEndpoint (string) -- [REQUIRED]

    The OIDC IdP user information endpoint used to configure your private workforce.

  • LogoutEndpoint (string) -- [REQUIRED]

    The OIDC IdP logout endpoint used to configure your private workforce.

  • JwksUri (string) -- [REQUIRED]

    The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

type SourceIpConfig

dict

param SourceIpConfig

A list of IP address ranges ( CIDRs ). Used to create an allow list of IP addresses for a private workforce. Workers will only be able to login to their worker portal from an IP address within this range. By default, a workforce isn't restricted to specific IP addresses.

  • Cidrs (list) -- [REQUIRED]

    A list of one to ten Classless Inter-Domain Routing (CIDR) values.

    Maximum: Ten CIDR values

    Note

    The following Length Constraints apply to individual CIDR values in the CIDR value list.

    • (string) --

type WorkforceName

string

param WorkforceName

[REQUIRED]

The name of the private workforce.

type Tags

list

param Tags

An array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.

  • (dict) --

    A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

    You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

    For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

    • Key (string) -- [REQUIRED]

      The tag key. Tag keys must be unique per resource.

    • Value (string) -- [REQUIRED]

      The tag value.

type WorkforceVpcConfig

dict

param WorkforceVpcConfig

Use this parameter to configure a workforce using VPC.

  • VpcId (string) --

    The ID of the VPC that the workforce uses for communication.

  • SecurityGroupIds (list) --

    The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

    • (string) --

  • Subnets (list) --

    The ID of the subnets in the VPC that you want to connect.

    • (string) --

rtype

dict

returns

Response Syntax

{
    'WorkforceArn': 'string'
}

Response Structure

  • (dict) --

    • WorkforceArn (string) --

      The Amazon Resource Name (ARN) of the workforce.

DescribeLabelingJob (updated) Link ¶
Changes (response)
{'LabelingJobAlgorithmsConfig': {'LabelingJobResourceConfig': {'VpcConfig': {'SecurityGroupIds': ['string'],
                                                                             'Subnets': ['string']}}}}

Gets information about a labeling job.

See also: AWS API Documentation

Request Syntax

client.describe_labeling_job(
    LabelingJobName='string'
)
type LabelingJobName

string

param LabelingJobName

[REQUIRED]

The name of the labeling job to return information for.

rtype

dict

returns

Response Syntax

{
    'LabelingJobStatus': 'Initializing'|'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped',
    'LabelCounters': {
        'TotalLabeled': 123,
        'HumanLabeled': 123,
        'MachineLabeled': 123,
        'FailedNonRetryableError': 123,
        'Unlabeled': 123
    },
    'FailureReason': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModifiedTime': datetime(2015, 1, 1),
    'JobReferenceCode': 'string',
    'LabelingJobName': 'string',
    'LabelingJobArn': 'string',
    'LabelAttributeName': 'string',
    'InputConfig': {
        'DataSource': {
            'S3DataSource': {
                'ManifestS3Uri': 'string'
            },
            'SnsDataSource': {
                'SnsTopicArn': 'string'
            }
        },
        'DataAttributes': {
            'ContentClassifiers': [
                'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
            ]
        }
    },
    'OutputConfig': {
        'S3OutputPath': 'string',
        'KmsKeyId': 'string',
        'SnsTopicArn': 'string'
    },
    'RoleArn': 'string',
    'LabelCategoryConfigS3Uri': 'string',
    'StoppingConditions': {
        'MaxHumanLabeledObjectCount': 123,
        'MaxPercentageOfInputDatasetLabeled': 123
    },
    'LabelingJobAlgorithmsConfig': {
        'LabelingJobAlgorithmSpecificationArn': 'string',
        'InitialActiveLearningModelArn': 'string',
        'LabelingJobResourceConfig': {
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        }
    },
    'HumanTaskConfig': {
        'WorkteamArn': 'string',
        'UiConfig': {
            'UiTemplateS3Uri': 'string',
            'HumanTaskUiArn': 'string'
        },
        'PreHumanTaskLambdaArn': 'string',
        'TaskKeywords': [
            'string',
        ],
        'TaskTitle': 'string',
        'TaskDescription': 'string',
        'NumberOfHumanWorkersPerDataObject': 123,
        'TaskTimeLimitInSeconds': 123,
        'TaskAvailabilityLifetimeInSeconds': 123,
        'MaxConcurrentTaskCount': 123,
        'AnnotationConsolidationConfig': {
            'AnnotationConsolidationLambdaArn': 'string'
        },
        'PublicWorkforceTaskPrice': {
            'AmountInUsd': {
                'Dollars': 123,
                'Cents': 123,
                'TenthFractionsOfACent': 123
            }
        }
    },
    'Tags': [
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    'LabelingJobOutput': {
        'OutputDatasetS3Uri': 'string',
        'FinalActiveLearningModelArn': 'string'
    }
}

Response Structure

  • (dict) --

    • LabelingJobStatus (string) --

      The processing status of the labeling job.

    • LabelCounters (dict) --

      Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled.

      • TotalLabeled (integer) --

        The total number of objects labeled.

      • HumanLabeled (integer) --

        The total number of objects labeled by a human worker.

      • MachineLabeled (integer) --

        The total number of objects labeled by automated data labeling.

      • FailedNonRetryableError (integer) --

        The total number of objects that could not be labeled due to an error.

      • Unlabeled (integer) --

        The total number of objects not yet labeled.

    • FailureReason (string) --

      If the job failed, the reason that it failed.

    • CreationTime (datetime) --

      The date and time that the labeling job was created.

    • LastModifiedTime (datetime) --

      The date and time that the labeling job was last updated.

    • JobReferenceCode (string) --

      A unique identifier for work done as part of a labeling job.

    • LabelingJobName (string) --

      The name assigned to the labeling job when it was created.

    • LabelingJobArn (string) --

      The Amazon Resource Name (ARN) of the labeling job.

    • LabelAttributeName (string) --

      The attribute used as the label in the output manifest file.

    • InputConfig (dict) --

      Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

      • DataSource (dict) --

        The location of the input data.

        • S3DataSource (dict) --

          The Amazon S3 location of the input data objects.

          • ManifestS3Uri (string) --

            The Amazon S3 location of the manifest file that describes the input data objects.

            The input manifest file referenced in ManifestS3Uri must contain one of the following keys: source-ref or source . The value of the keys are interpreted as follows:

            • source-ref : The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image.

            • source : The source of the object is the value. Use this value when the object is a text value.

            If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.

        • SnsDataSource (dict) --

          An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.

          • SnsTopicArn (string) --

            The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.

      • DataAttributes (dict) --

        Attributes of the data specified by the customer.

        • ContentClassifiers (list) --

          Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.

          • (string) --

    • OutputConfig (dict) --

      The location of the job's output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.

      • S3OutputPath (string) --

        The Amazon S3 location to write output data.

      • KmsKeyId (string) --

        The Amazon Web Services Key Management Service ID of the key used to encrypt the output data, if any.

        If you provide your own KMS key ID, you must add the required permissions to your KMS key described in Encrypt Output Data and Storage Volume with Amazon Web Services KMS.

        If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon Web Services KMS key for Amazon S3 for your role's account to encrypt your output data.

        If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

      • SnsTopicArn (string) --

        An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a SnsTopicArn if you want to do real time chaining to another streaming job and receive an Amazon SNS notifications each time a data object is submitted by a worker.

        If you provide an SnsTopicArn in OutputConfig , when workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here.

        To learn more, see Receive Output Data from a Streaming Labeling Job.

    • RoleArn (string) --

      The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during data labeling.

    • LabelCategoryConfigS3Uri (string) --

      The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits:

      • Semantic segmentation labeling jobs using automated labeling: 20 labels

      • Box bounding labeling jobs (all): 10 labels

      The file is a JSON structure in the following format:

      {

      "document-version": "2018-11-28"

      "labels": [

      {

      "label": "label 1"

      },

      {

      "label": "label 2"

      },

      ...

      {

      "label": "label n"

      }

      ]

      }

    • StoppingConditions (dict) --

      A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.

      • MaxHumanLabeledObjectCount (integer) --

        The maximum number of objects that can be labeled by human workers.

      • MaxPercentageOfInputDatasetLabeled (integer) --

        The maximum number of input data objects that should be labeled.

    • LabelingJobAlgorithmsConfig (dict) --

      Configuration information for automated data labeling.

      • LabelingJobAlgorithmSpecificationArn (string) --

        Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:

        • Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification

        • Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification

        • Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection

        • Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation

      • InitialActiveLearningModelArn (string) --

        At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.

      • LabelingJobResourceConfig (dict) --

        Provides configuration information for a labeling job.

        • VolumeKmsKeyId (string) --

          The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling.

          You can only specify a VolumeKmsKeyId when you create a labeling job with automated data labeling enabled using the API operation CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption.

          The VolumeKmsKeyId can be any of the following formats:

          • KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.

            • (string) --

          • Subnets (list) --

            The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.

            • (string) --

    • HumanTaskConfig (dict) --

      Configuration information required for human workers to complete a labeling task.

      • WorkteamArn (string) --

        The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.

      • UiConfig (dict) --

        Information about the user interface that workers use to complete the labeling task.

        • UiTemplateS3Uri (string) --

          The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.

        • HumanTaskUiArn (string) --

          The ARN of the worker task template used to render the worker UI and tools for labeling job tasks.

          Use this parameter when you are creating a labeling job for named entity recognition, 3D point cloud and video frame labeling jobs. Use your labeling job task type to select one of the following ARNs and use it with this parameter when you create a labeling job. Replace aws-region with the Amazon Web Services Region you are creating your labeling job in. For example, replace aws-region with us-west-1 if you create a labeling job in US West (N. California).

          Named Entity Recognition

          Use the following HumanTaskUiArn for named entity recognition labeling jobs:

          arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition

          3D Point Cloud HumanTaskUiArns

          Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection

          Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking

          Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation

          Video Frame HumanTaskUiArns

          Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs.

          • arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection

          Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs.

          • arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking

      • PreHumanTaskLambdaArn (string) --

        The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.

        For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation Lambda.

        Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox

        Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass

        Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel

        Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation

        Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass

        Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel

        Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition

        Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass

        Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection

        Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking

        3D Point Cloud Modalities

        Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.

        3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection

        3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking

        3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation

        Use the following ARNs for Label Verification and Adjustment Jobs

        Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

        Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox

        Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox

        Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation

        Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation

        Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection

        Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking

        3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection

        3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking

        3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.

        • arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation

        • arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation

      • TaskKeywords (list) --

        Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.

        • (string) --

      • TaskTitle (string) --

        A title for the task for your human workers.

      • TaskDescription (string) --

        A description of the task for your human workers.

      • NumberOfHumanWorkersPerDataObject (integer) --

        The number of human workers that will label an object.

      • TaskTimeLimitInSeconds (integer) --

        The amount of time that a worker has to complete a task.

        If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).

        If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:

        • For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).

        • For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.

      • TaskAvailabilityLifetimeInSeconds (integer) --

        The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.

        • If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).

        • If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.

      • MaxConcurrentTaskCount (integer) --

        Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects.

      • AnnotationConsolidationConfig (dict) --

        Configures how labels are consolidated across human workers.

        • AnnotationConsolidationLambdaArn (string) --

          The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data.

          This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn . For custom labeling workflows, see Post-annotation Lambda.

          Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox

          Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass

          Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel

          Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation

          Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass

          Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel

          Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition

          Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass

          Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection

          Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking

          3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection

          3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking

          3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation

          Use the following ARNs for Label Verification and Adjustment Jobs

          Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels.

          Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation

          Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation

          Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox

          Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox

          Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection

          Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking

          3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection

          3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking

          3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation

          • arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation

          • arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation

      • PublicWorkforceTaskPrice (dict) --

        The price that you pay for each task performed by an Amazon Mechanical Turk worker.

        • AmountInUsd (dict) --

          Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.

          • Dollars (integer) --

            The whole number of dollars in the amount.

          • Cents (integer) --

            The fractional portion, in cents, of the amount.

          • TenthFractionsOfACent (integer) --

            Fractions of a cent, in tenths.

    • Tags (list) --

      An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

      • (dict) --

        A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

        You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags.

        For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources. For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy.

        • Key (string) --

          The tag key. Tag keys must be unique per resource.

        • Value (string) --

          The tag value.

    • LabelingJobOutput (dict) --

      The location of the output produced by the labeling job.

      • OutputDatasetS3Uri (string) --

        The Amazon S3 bucket location of the manifest file for labeled data.

      • FinalActiveLearningModelArn (string) --

        The Amazon Resource Name (ARN) for the most recent SageMaker model trained as part of automated data labeling.

DescribeWorkforce (updated) Link ¶
Changes (response)
{'Workforce': {'FailureReason': 'string',
               'Status': 'Initializing | Updating | Deleting | Failed | Active',
               'WorkforceVpcConfig': {'SecurityGroupIds': ['string'],
                                      'Subnets': ['string'],
                                      'VpcEndpointId': 'string',
                                      'VpcId': 'string'}}}

Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges ( CIDRs ). Allowable IP address ranges are the IP addresses that workers can use to access tasks.

Warning

This operation applies only to private workforces.

See also: AWS API Documentation

Request Syntax

client.describe_workforce(
    WorkforceName='string'
)
type WorkforceName

string

param WorkforceName

[REQUIRED]

The name of the private workforce whose access you want to restrict. WorkforceName is automatically set to default when a workforce is created and cannot be modified.

rtype

dict

returns

Response Syntax

{
    'Workforce': {
        'WorkforceName': 'string',
        'WorkforceArn': 'string',
        'LastUpdatedDate': datetime(2015, 1, 1),
        'SourceIpConfig': {
            'Cidrs': [
                'string',
            ]
        },
        'SubDomain': 'string',
        'CognitoConfig': {
            'UserPool': 'string',
            'ClientId': 'string'
        },
        'OidcConfig': {
            'ClientId': 'string',
            'Issuer': 'string',
            'AuthorizationEndpoint': 'string',
            'TokenEndpoint': 'string',
            'UserInfoEndpoint': 'string',
            'LogoutEndpoint': 'string',
            'JwksUri': 'string'
        },
        'CreateDate': datetime(2015, 1, 1),
        'WorkforceVpcConfig': {
            'VpcId': 'string',
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ],
            'VpcEndpointId': 'string'
        },
        'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
        'FailureReason': 'string'
    }
}

Response Structure

  • (dict) --

    • Workforce (dict) --

      A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

      • WorkforceName (string) --

        The name of the private workforce.

      • WorkforceArn (string) --

        The Amazon Resource Name (ARN) of the private workforce.

      • LastUpdatedDate (datetime) --

        The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

      • SourceIpConfig (dict) --

        A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

        • Cidrs (list) --

          A list of one to ten Classless Inter-Domain Routing (CIDR) values.

          Maximum: Ten CIDR values

          Note

          The following Length Constraints apply to individual CIDR values in the CIDR value list.

          • (string) --

      • SubDomain (string) --

        The subdomain for your OIDC Identity Provider.

      • CognitoConfig (dict) --

        The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

        • UserPool (string) --

          A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

        • ClientId (string) --

          The client ID for your Amazon Cognito user pool.

      • OidcConfig (dict) --

        The configuration of an OIDC Identity Provider (IdP) private workforce.

        • ClientId (string) --

          The OIDC IdP client ID used to configure your private workforce.

        • Issuer (string) --

          The OIDC IdP issuer used to configure your private workforce.

        • AuthorizationEndpoint (string) --

          The OIDC IdP authorization endpoint used to configure your private workforce.

        • TokenEndpoint (string) --

          The OIDC IdP token endpoint used to configure your private workforce.

        • UserInfoEndpoint (string) --

          The OIDC IdP user information endpoint used to configure your private workforce.

        • LogoutEndpoint (string) --

          The OIDC IdP logout endpoint used to configure your private workforce.

        • JwksUri (string) --

          The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

      • CreateDate (datetime) --

        The date that the workforce is created.

      • WorkforceVpcConfig (dict) --

        The configuration of a VPC workforce.

        • VpcId (string) --

          The ID of the VPC that the workforce uses for communication.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

          • (string) --

        • Subnets (list) --

          The ID of the subnets in the VPC that you want to connect.

          • (string) --

        • VpcEndpointId (string) --

          The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

      • Status (string) --

        The status of your workforce.

      • FailureReason (string) --

        The reason your workforce failed.

ListWorkforces (updated) Link ¶
Changes (response)
{'Workforces': {'FailureReason': 'string',
                'Status': 'Initializing | Updating | Deleting | Failed | '
                          'Active',
                'WorkforceVpcConfig': {'SecurityGroupIds': ['string'],
                                       'Subnets': ['string'],
                                       'VpcEndpointId': 'string',
                                       'VpcId': 'string'}}}

Use this operation to list all private and vendor workforces in an Amazon Web Services Region. Note that you can only have one private workforce per Amazon Web Services Region.

See also: AWS API Documentation

Request Syntax

client.list_workforces(
    SortBy='Name'|'CreateDate',
    SortOrder='Ascending'|'Descending',
    NameContains='string',
    NextToken='string',
    MaxResults=123
)
type SortBy

string

param SortBy

Sort workforces using the workforce name or creation date.

type SortOrder

string

param SortOrder

Sort workforces in ascending or descending order.

type NameContains

string

param NameContains

A filter you can use to search for workforces using part of the workforce name.

type NextToken

string

param NextToken

A token to resume pagination.

type MaxResults

integer

param MaxResults

The maximum number of workforces returned in the response.

rtype

dict

returns

Response Syntax

{
    'Workforces': [
        {
            'WorkforceName': 'string',
            'WorkforceArn': 'string',
            'LastUpdatedDate': datetime(2015, 1, 1),
            'SourceIpConfig': {
                'Cidrs': [
                    'string',
                ]
            },
            'SubDomain': 'string',
            'CognitoConfig': {
                'UserPool': 'string',
                'ClientId': 'string'
            },
            'OidcConfig': {
                'ClientId': 'string',
                'Issuer': 'string',
                'AuthorizationEndpoint': 'string',
                'TokenEndpoint': 'string',
                'UserInfoEndpoint': 'string',
                'LogoutEndpoint': 'string',
                'JwksUri': 'string'
            },
            'CreateDate': datetime(2015, 1, 1),
            'WorkforceVpcConfig': {
                'VpcId': 'string',
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ],
                'VpcEndpointId': 'string'
            },
            'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
            'FailureReason': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Workforces (list) --

      A list containing information about your workforce.

      • (dict) --

        A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

        • WorkforceName (string) --

          The name of the private workforce.

        • WorkforceArn (string) --

          The Amazon Resource Name (ARN) of the private workforce.

        • LastUpdatedDate (datetime) --

          The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

        • SourceIpConfig (dict) --

          A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

          • Cidrs (list) --

            A list of one to ten Classless Inter-Domain Routing (CIDR) values.

            Maximum: Ten CIDR values

            Note

            The following Length Constraints apply to individual CIDR values in the CIDR value list.

            • (string) --

        • SubDomain (string) --

          The subdomain for your OIDC Identity Provider.

        • CognitoConfig (dict) --

          The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

          • UserPool (string) --

            A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

          • ClientId (string) --

            The client ID for your Amazon Cognito user pool.

        • OidcConfig (dict) --

          The configuration of an OIDC Identity Provider (IdP) private workforce.

          • ClientId (string) --

            The OIDC IdP client ID used to configure your private workforce.

          • Issuer (string) --

            The OIDC IdP issuer used to configure your private workforce.

          • AuthorizationEndpoint (string) --

            The OIDC IdP authorization endpoint used to configure your private workforce.

          • TokenEndpoint (string) --

            The OIDC IdP token endpoint used to configure your private workforce.

          • UserInfoEndpoint (string) --

            The OIDC IdP user information endpoint used to configure your private workforce.

          • LogoutEndpoint (string) --

            The OIDC IdP logout endpoint used to configure your private workforce.

          • JwksUri (string) --

            The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

        • CreateDate (datetime) --

          The date that the workforce is created.

        • WorkforceVpcConfig (dict) --

          The configuration of a VPC workforce.

          • VpcId (string) --

            The ID of the VPC that the workforce uses for communication.

          • SecurityGroupIds (list) --

            The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

            • (string) --

          • Subnets (list) --

            The ID of the subnets in the VPC that you want to connect.

            • (string) --

          • VpcEndpointId (string) --

            The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

        • Status (string) --

          The status of your workforce.

        • FailureReason (string) --

          The reason your workforce failed.

    • NextToken (string) --

      A token to resume pagination.

UpdateWorkforce (updated) Link ¶
Changes (request, response)
Request
{'WorkforceVpcConfig': {'SecurityGroupIds': ['string'],
                        'Subnets': ['string'],
                        'VpcId': 'string'}}
Response
{'Workforce': {'FailureReason': 'string',
               'Status': 'Initializing | Updating | Deleting | Failed | Active',
               'WorkforceVpcConfig': {'SecurityGroupIds': ['string'],
                                      'Subnets': ['string'],
                                      'VpcEndpointId': 'string',
                                      'VpcId': 'string'}}}

Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.

The worker portal is now supported in VPC and public internet.

Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal.

To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "0.0.0.0/0".

Warning

Amazon SageMaker does not support Source Ip restriction for worker portals in VPC.

Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP.

Warning

You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation.

After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation.

Warning

This operation only applies to private workforces.

See also: AWS API Documentation

Request Syntax

client.update_workforce(
    WorkforceName='string',
    SourceIpConfig={
        'Cidrs': [
            'string',
        ]
    },
    OidcConfig={
        'ClientId': 'string',
        'ClientSecret': 'string',
        'Issuer': 'string',
        'AuthorizationEndpoint': 'string',
        'TokenEndpoint': 'string',
        'UserInfoEndpoint': 'string',
        'LogoutEndpoint': 'string',
        'JwksUri': 'string'
    },
    WorkforceVpcConfig={
        'VpcId': 'string',
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    }
)
type WorkforceName

string

param WorkforceName

[REQUIRED]

The name of the private workforce that you want to update. You can find your workforce name by using the operation.

type SourceIpConfig

dict

param SourceIpConfig

A list of one to ten worker IP address ranges ( CIDRs ) that can be used to access tasks assigned to this workforce.

Maximum: Ten CIDR values

  • Cidrs (list) -- [REQUIRED]

    A list of one to ten Classless Inter-Domain Routing (CIDR) values.

    Maximum: Ten CIDR values

    Note

    The following Length Constraints apply to individual CIDR values in the CIDR value list.

    • (string) --

type OidcConfig

dict

param OidcConfig

Use this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.

  • ClientId (string) -- [REQUIRED]

    The OIDC IdP client ID used to configure your private workforce.

  • ClientSecret (string) -- [REQUIRED]

    The OIDC IdP client secret used to configure your private workforce.

  • Issuer (string) -- [REQUIRED]

    The OIDC IdP issuer used to configure your private workforce.

  • AuthorizationEndpoint (string) -- [REQUIRED]

    The OIDC IdP authorization endpoint used to configure your private workforce.

  • TokenEndpoint (string) -- [REQUIRED]

    The OIDC IdP token endpoint used to configure your private workforce.

  • UserInfoEndpoint (string) -- [REQUIRED]

    The OIDC IdP user information endpoint used to configure your private workforce.

  • LogoutEndpoint (string) -- [REQUIRED]

    The OIDC IdP logout endpoint used to configure your private workforce.

  • JwksUri (string) -- [REQUIRED]

    The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

type WorkforceVpcConfig

dict

param WorkforceVpcConfig

Use this parameter to update your VPC configuration for a workforce.

  • VpcId (string) --

    The ID of the VPC that the workforce uses for communication.

  • SecurityGroupIds (list) --

    The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

    • (string) --

  • Subnets (list) --

    The ID of the subnets in the VPC that you want to connect.

    • (string) --

rtype

dict

returns

Response Syntax

{
    'Workforce': {
        'WorkforceName': 'string',
        'WorkforceArn': 'string',
        'LastUpdatedDate': datetime(2015, 1, 1),
        'SourceIpConfig': {
            'Cidrs': [
                'string',
            ]
        },
        'SubDomain': 'string',
        'CognitoConfig': {
            'UserPool': 'string',
            'ClientId': 'string'
        },
        'OidcConfig': {
            'ClientId': 'string',
            'Issuer': 'string',
            'AuthorizationEndpoint': 'string',
            'TokenEndpoint': 'string',
            'UserInfoEndpoint': 'string',
            'LogoutEndpoint': 'string',
            'JwksUri': 'string'
        },
        'CreateDate': datetime(2015, 1, 1),
        'WorkforceVpcConfig': {
            'VpcId': 'string',
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ],
            'VpcEndpointId': 'string'
        },
        'Status': 'Initializing'|'Updating'|'Deleting'|'Failed'|'Active',
        'FailureReason': 'string'
    }
}

Response Structure

  • (dict) --

    • Workforce (dict) --

      A single private workforce. You can create one private work force in each Amazon Web Services Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.

      • WorkforceName (string) --

        The name of the private workforce.

      • WorkforceArn (string) --

        The Amazon Resource Name (ARN) of the private workforce.

      • LastUpdatedDate (datetime) --

        The most recent date that was used to successfully add one or more IP address ranges ( CIDRs ) to a private workforce's allow list.

      • SourceIpConfig (dict) --

        A list of one to ten IP address ranges ( CIDRs ) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.

        • Cidrs (list) --

          A list of one to ten Classless Inter-Domain Routing (CIDR) values.

          Maximum: Ten CIDR values

          Note

          The following Length Constraints apply to individual CIDR values in the CIDR value list.

          • (string) --

      • SubDomain (string) --

        The subdomain for your OIDC Identity Provider.

      • CognitoConfig (dict) --

        The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.

        • UserPool (string) --

          A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.

        • ClientId (string) --

          The client ID for your Amazon Cognito user pool.

      • OidcConfig (dict) --

        The configuration of an OIDC Identity Provider (IdP) private workforce.

        • ClientId (string) --

          The OIDC IdP client ID used to configure your private workforce.

        • Issuer (string) --

          The OIDC IdP issuer used to configure your private workforce.

        • AuthorizationEndpoint (string) --

          The OIDC IdP authorization endpoint used to configure your private workforce.

        • TokenEndpoint (string) --

          The OIDC IdP token endpoint used to configure your private workforce.

        • UserInfoEndpoint (string) --

          The OIDC IdP user information endpoint used to configure your private workforce.

        • LogoutEndpoint (string) --

          The OIDC IdP logout endpoint used to configure your private workforce.

        • JwksUri (string) --

          The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.

      • CreateDate (datetime) --

        The date that the workforce is created.

      • WorkforceVpcConfig (dict) --

        The configuration of a VPC workforce.

        • VpcId (string) --

          The ID of the VPC that the workforce uses for communication.

        • SecurityGroupIds (list) --

          The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

          • (string) --

        • Subnets (list) --

          The ID of the subnets in the VPC that you want to connect.

          • (string) --

        • VpcEndpointId (string) --

          The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.

      • Status (string) --

        The status of your workforce.

      • FailureReason (string) --

        The reason your workforce failed.