2021/03/25 - Amazon SageMaker Service - 5 updated api methods
Changes This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
{'Environment': {'string': 'string'}}
Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.
If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inference.
In the request body, you provide the following:
AlgorithmSpecification - Identifies the training algorithm to use.
HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.
InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.
OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.
ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.
EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.
RoleArn - The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.
StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete.
Environment - The environment variables to set in the Docker container.
For more information about Amazon SageMaker, see How It Works.
See also: AWS API Documentation
Request Syntax
client.create_training_job( TrainingJobName='string', HyperParameters={ 'string': 'string' }, AlgorithmSpecification={ 'TrainingImage': 'string', 'AlgorithmName': 'string', 'TrainingInputMode': 'Pipe'|'File', 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'EnableSageMakerMetricsTimeSeries': True|False }, RoleArn='string', InputDataConfig=[ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File', 'ShuffleConfig': { 'Seed': 123 } }, ], OutputDataConfig={ 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, ResourceConfig={ 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' }, VpcConfig={ 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] }, StoppingCondition={ 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123 }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], EnableNetworkIsolation=True|False, EnableInterContainerTrafficEncryption=True|False, EnableManagedSpotTraining=True|False, CheckpointConfig={ 'S3Uri': 'string', 'LocalPath': 'string' }, DebugHookConfig={ 'LocalPath': 'string', 'S3OutputPath': 'string', 'HookParameters': { 'string': 'string' }, 'CollectionConfigurations': [ { 'CollectionName': 'string', 'CollectionParameters': { 'string': 'string' } }, ] }, DebugRuleConfigurations=[ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], TensorBoardOutputConfig={ 'LocalPath': 'string', 'S3OutputPath': 'string' }, ExperimentConfig={ 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string' }, ProfilerConfig={ 'S3OutputPath': 'string', 'ProfilingIntervalInMilliseconds': 123, 'ProfilingParameters': { 'string': 'string' } }, ProfilerRuleConfigurations=[ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], Environment={ 'string': 'string' } )
string
[REQUIRED]
The name of the training job. The name must be unique within an AWS Region in an AWS account.
dict
Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.
You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint .
(string) --
(string) --
dict
[REQUIRED]
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
TrainingImage (string) --
The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
AlgorithmName (string) --
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage .
TrainingInputMode (string) -- [REQUIRED]
The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.
In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.
For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.
MetricDefinitions (list) --
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
(dict) --
Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.
Name (string) -- [REQUIRED]
The name of the metric.
Regex (string) -- [REQUIRED]
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
EnableSageMakerMetricsTimeSeries (boolean) --
To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:
You use one of the Amazon SageMaker built-in algorithms
You use one of the following Prebuilt Amazon SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
string
[REQUIRED]
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker Roles.
Note
To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
list
An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.
Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data . The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.
Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.
(dict) --
A channel is a named input source that training algorithms can consume.
ChannelName (string) -- [REQUIRED]
The name of the channel.
DataSource (dict) -- [REQUIRED]
The location of the channel data.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) -- [REQUIRED]
If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.
If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .
S3Uri (string) -- [REQUIRED]
Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix
A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
S3DataDistributionType (string) --
If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .
If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.
AttributeNames (list) --
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string) --
FileSystemDataSource (dict) --
The file system that is associated with a channel.
FileSystemId (string) -- [REQUIRED]
The file system id.
FileSystemAccessMode (string) -- [REQUIRED]
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
FileSystemType (string) -- [REQUIRED]
The file system type.
DirectoryPath (string) -- [REQUIRED]
The full path to the directory to associate with the channel.
ContentType (string) --
The MIME type of the data.
CompressionType (string) --
If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
RecordWrapperType (string) --
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
InputMode (string) --
(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.
To use a model for incremental training, choose File input model.
ShuffleConfig (dict) --
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.
For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
Seed (integer) -- [REQUIRED]
Determines the shuffling order in ShuffleConfig value.
dict
[REQUIRED]
Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
KmsKeyId (string) --
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .
S3OutputPath (string) -- [REQUIRED]
Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .
dict
[REQUIRED]
The resources, including the ML compute instances and ML storage volumes, to use for model training.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
InstanceType (string) -- [REQUIRED]
The ML compute instance type.
InstanceCount (integer) -- [REQUIRED]
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB (integer) -- [REQUIRED]
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.
You must specify sufficient ML storage for your scenario.
Note
Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
Note
Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.
For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.
VolumeKmsKeyId (string) --
The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId can be in any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
dict
A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds (list) -- [REQUIRED]
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) -- [REQUIRED]
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
dict
[REQUIRED]
Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
MaxRuntimeInSeconds (integer) --
The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
MaxWaitTimeInSeconds (integer) --
The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .
list
An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging AWS Resources.
(dict) --
Describes a tag.
Key (string) -- [REQUIRED]
The tag key.
Value (string) -- [REQUIRED]
The tag value.
boolean
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
boolean
To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
boolean
To train models using managed spot training, choose True . Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.
The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
dict
Contains information about the output location for managed spot training checkpoint data.
S3Uri (string) -- [REQUIRED]
Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .
LocalPath (string) --
(Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .
dict
Configuration information for the Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
LocalPath (string) --
Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/ .
S3OutputPath (string) -- [REQUIRED]
Path to Amazon S3 storage location for metrics and tensors.
HookParameters (dict) --
Configuration information for the Debugger hook parameters.
(string) --
(string) --
CollectionConfigurations (list) --
Configuration information for Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(dict) --
Configuration information for the Debugger output tensor collections.
CollectionName (string) --
The name of the tensor collection. The name must be unique relative to other rule configuration names.
CollectionParameters (dict) --
Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .
(string) --
(string) --
list
Configuration information for Debugger rules for debugging output tensors.
(dict) --
Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
RuleConfigurationName (string) -- [REQUIRED]
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) -- [REQUIRED]
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a Debugger custom rule for debugging a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
dict
Configuration of storage locations for the Debugger TensorBoard output data.
LocalPath (string) --
Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .
S3OutputPath (string) -- [REQUIRED]
Path to Amazon S3 storage location for TensorBoard output.
dict
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
dict
Configuration information for Debugger system monitoring, framework profiling, and storage paths.
S3OutputPath (string) -- [REQUIRED]
Path to Amazon S3 storage location for system and framework metrics.
ProfilingIntervalInMilliseconds (integer) --
A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.
ProfilingParameters (dict) --
Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(string) --
(string) --
list
Configuration information for Debugger rules for profiling system and framework metrics.
(dict) --
Configuration information for profiling rules.
RuleConfigurationName (string) -- [REQUIRED]
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) -- [REQUIRED]
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a Debugger custom rule for profiling a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
dict
The environment variables to set in the Docker container.
(string) --
(string) --
dict
Response Syntax
{ 'TrainingJobArn': 'string' }
Response Structure
(dict) --
TrainingJobArn (string) --
The Amazon Resource Name (ARN) of the training job.
{'AutoMLJobSecondaryStatus': {'Completed', 'ExplainabilityError', 'GeneratingExplainabilityReport'}}
Returns information about an Amazon SageMaker job.
See also: AWS API Documentation
Request Syntax
client.describe_auto_ml_job( AutoMLJobName='string' )
string
[REQUIRED]
Request information about a job using that job's unique name.
dict
Response Syntax
{ 'AutoMLJobName': 'string', 'AutoMLJobArn': 'string', 'InputDataConfig': [ { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix', 'S3Uri': 'string' } }, 'CompressionType': 'None'|'Gzip', 'TargetAttributeName': 'string' }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, 'RoleArn': 'string', 'AutoMLJobObjective': { 'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC' }, 'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression', 'AutoMLJobConfig': { 'CompletionCriteria': { 'MaxCandidates': 123, 'MaxRuntimePerTrainingJobInSeconds': 123, 'MaxAutoMLJobRuntimeInSeconds': 123 }, 'SecurityConfig': { 'VolumeKmsKeyId': 'string', 'EnableInterContainerTrafficEncryption': True|False, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] } } }, 'CreationTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'FailureReason': 'string', 'BestCandidate': { 'CandidateName': 'string', 'FinalAutoMLJobObjectiveMetric': { 'Type': 'Maximize'|'Minimize', 'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC', 'Value': ... }, 'ObjectiveStatus': 'Succeeded'|'Pending'|'Failed', 'CandidateSteps': [ { 'CandidateStepType': 'AWS::SageMaker::TrainingJob'|'AWS::SageMaker::TransformJob'|'AWS::SageMaker::ProcessingJob', 'CandidateStepArn': 'string', 'CandidateStepName': 'string' }, ], 'CandidateStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping', 'InferenceContainers': [ { 'Image': 'string', 'ModelDataUrl': 'string', 'Environment': { 'string': 'string' } }, ], 'CreationTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'FailureReason': 'string' }, 'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping', 'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated'|'GeneratingExplainabilityReport'|'Completed'|'ExplainabilityError', 'GenerateCandidateDefinitionsOnly': True|False, 'AutoMLJobArtifacts': { 'CandidateDefinitionNotebookLocation': 'string', 'DataExplorationNotebookLocation': 'string' }, 'ResolvedAttributes': { 'AutoMLJobObjective': { 'MetricName': 'Accuracy'|'MSE'|'F1'|'F1macro'|'AUC' }, 'ProblemType': 'BinaryClassification'|'MulticlassClassification'|'Regression', 'CompletionCriteria': { 'MaxCandidates': 123, 'MaxRuntimePerTrainingJobInSeconds': 123, 'MaxAutoMLJobRuntimeInSeconds': 123 } } }
Response Structure
(dict) --
AutoMLJobName (string) --
Returns the name of a job.
AutoMLJobArn (string) --
Returns the job's ARN.
InputDataConfig (list) --
Returns the job's input data config.
(dict) --
Similar to Channel. A channel is a named input source that training algorithms can consume. Refer to Channel for detailed descriptions.
DataSource (dict) --
The data source.
S3DataSource (dict) --
The Amazon S3 location of the input data.
Note
The input data must be in CSV format and contain at least 500 rows.
S3DataType (string) --
The data type.
S3Uri (string) --
The URL to the Amazon S3 data source.
CompressionType (string) --
You can use Gzip or None. The default value is None.
TargetAttributeName (string) --
The name of the target variable in supervised learning, a.k.a. 'y'.
OutputDataConfig (dict) --
Returns the job's output data config.
KmsKeyId (string) --
The AWS KMS encryption key ID.
S3OutputPath (string) --
The Amazon S3 output path. Must be 128 characters or less.
RoleArn (string) --
The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.
AutoMLJobObjective (dict) --
Returns the job's objective.
MetricName (string) --
The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data.
Here are the options:
MSE : The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive, the better a model is at predicting the actual values the smaller the MSE value. When the data contains outliers, they tend to dominate the MSE which might cause subpar prediction performance.
Accuracy : The ratio of the number correctly classified items to the total number (correctly and incorrectly) classified. It is used for binary and multiclass classification. Measures how close the predicted class values are to the actual values. Accuracy values vary between zero and one, one being perfect accuracy and zero perfect inaccuracy.
F1 : The F1 score is the harmonic mean of the precision and recall. It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class; false when they do not. Precision is the ratio of the true positive predictions to all positive predictions (including the false positives) in a data set and measures the quality of the prediction when it predicts the positive class. Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances and measures how completely a model predicts the actual class members in a data set. The standard F1 score weighs precision and recall equally. But which metric is paramount typically depends on specific aspects of a problem. F1 scores vary between zero and one, one being the best possible performance and zero the worst.
AUC : The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms such as logistic regression that return probabilities. A threshold is needed to map the probabilities into classifications. The relevant curve is the receiver operating characteristic curve that plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives but more false negatives. AUC is the area under this receiver operating characteristic curve and so provides an aggregated measure of the model performance across all possible classification thresholds. The AUC score can also be interpreted as the probability that a randomly selected positive data point is more likely to be predicted positive than a randomly selected negative example. AUC scores vary between zero and one, one being perfect accuracy and one half not better than a random classifier. Values less that one half predict worse than a random predictor and such consistently bad predictors can be inverted to obtain better than random predictors.
F1macro : The F1macro score applies F1 scoring to multiclass classification. In this context, you have multiple classes to predict. You just calculate the precision and recall for each class as you did for the positive class in binary classification. Then used these values to calculate the F1 score for each class and average them to obtain the F1macro score. F1macro scores vary between zero and one, one being the best possible performance and zero the worst.
If you do not specify a metric explicitly, the default behavior is to automatically use:
MSE : for regression.
F1 : for binary classification
Accuracy : for multiclass classification.
ProblemType (string) --
Returns the job's problem type.
AutoMLJobConfig (dict) --
Returns the job's config.
CompletionCriteria (dict) --
How long a job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates (integer) --
The maximum number of times a training job is allowed to run.
MaxRuntimePerTrainingJobInSeconds (integer) --
The maximum time, in seconds, a job is allowed to run.
MaxAutoMLJobRuntimeInSeconds (integer) --
The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.
SecurityConfig (dict) --
Security configuration for traffic encryption or Amazon VPC settings.
VolumeKmsKeyId (string) --
The key used to encrypt stored data.
EnableInterContainerTrafficEncryption (boolean) --
Whether to use traffic encryption between the container layers.
VpcConfig (dict) --
VPC configuration.
SecurityGroupIds (list) --
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) --
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
CreationTime (datetime) --
Returns the job's creation time.
EndTime (datetime) --
Returns the job's end time.
LastModifiedTime (datetime) --
Returns the job's last modified time.
FailureReason (string) --
Returns the job's FailureReason.
BestCandidate (dict) --
Returns the job's BestCandidate.
CandidateName (string) --
The candidate name.
FinalAutoMLJobObjectiveMetric (dict) --
The best candidate result from an AutoML training job.
Type (string) --
The type of metric with the best result.
MetricName (string) --
The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.
Value (float) --
The value of the metric with the best result.
ObjectiveStatus (string) --
The objective status.
CandidateSteps (list) --
The candidate's steps.
(dict) --
Information about the steps for a Candidate, and what step it is working on.
CandidateStepType (string) --
Whether the Candidate is at the transform, training, or processing step.
CandidateStepArn (string) --
The ARN for the Candidate's step.
CandidateStepName (string) --
The name for the Candidate's step.
CandidateStatus (string) --
The candidate's status.
InferenceContainers (list) --
The inference containers.
(dict) --
A list of container definitions that describe the different containers that make up one AutoML candidate. Refer to ContainerDefinition for more details.
Image (string) --
The ECR path of the container. Refer to ContainerDefinition for more details.
ModelDataUrl (string) --
The location of the model artifacts. Refer to ContainerDefinition for more details.
Environment (dict) --
Environment variables to set in the container. Refer to ContainerDefinition for more details.
(string) --
(string) --
CreationTime (datetime) --
The creation time.
EndTime (datetime) --
The end time.
LastModifiedTime (datetime) --
The last modified time.
FailureReason (string) --
The failure reason.
AutoMLJobStatus (string) --
Returns the job's AutoMLJobStatus.
AutoMLJobSecondaryStatus (string) --
Returns the job's AutoMLJobSecondaryStatus.
GenerateCandidateDefinitionsOnly (boolean) --
Returns the job's output from GenerateCandidateDefinitionsOnly.
AutoMLJobArtifacts (dict) --
Returns information on the job's artifacts found in AutoMLJobArtifacts.
CandidateDefinitionNotebookLocation (string) --
The URL to the notebook location.
DataExplorationNotebookLocation (string) --
The URL to the notebook location.
ResolvedAttributes (dict) --
This contains ProblemType, AutoMLJobObjective and CompletionCriteria. They're auto-inferred values, if not provided by you. If you do provide them, then they'll be the same as provided.
AutoMLJobObjective (dict) --
Specifies a metric to minimize or maximize as the objective of a job.
MetricName (string) --
The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data.
Here are the options:
MSE : The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive, the better a model is at predicting the actual values the smaller the MSE value. When the data contains outliers, they tend to dominate the MSE which might cause subpar prediction performance.
Accuracy : The ratio of the number correctly classified items to the total number (correctly and incorrectly) classified. It is used for binary and multiclass classification. Measures how close the predicted class values are to the actual values. Accuracy values vary between zero and one, one being perfect accuracy and zero perfect inaccuracy.
F1 : The F1 score is the harmonic mean of the precision and recall. It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class; false when they do not. Precision is the ratio of the true positive predictions to all positive predictions (including the false positives) in a data set and measures the quality of the prediction when it predicts the positive class. Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances and measures how completely a model predicts the actual class members in a data set. The standard F1 score weighs precision and recall equally. But which metric is paramount typically depends on specific aspects of a problem. F1 scores vary between zero and one, one being the best possible performance and zero the worst.
AUC : The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms such as logistic regression that return probabilities. A threshold is needed to map the probabilities into classifications. The relevant curve is the receiver operating characteristic curve that plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives but more false negatives. AUC is the area under this receiver operating characteristic curve and so provides an aggregated measure of the model performance across all possible classification thresholds. The AUC score can also be interpreted as the probability that a randomly selected positive data point is more likely to be predicted positive than a randomly selected negative example. AUC scores vary between zero and one, one being perfect accuracy and one half not better than a random classifier. Values less that one half predict worse than a random predictor and such consistently bad predictors can be inverted to obtain better than random predictors.
F1macro : The F1macro score applies F1 scoring to multiclass classification. In this context, you have multiple classes to predict. You just calculate the precision and recall for each class as you did for the positive class in binary classification. Then used these values to calculate the F1 score for each class and average them to obtain the F1macro score. F1macro scores vary between zero and one, one being the best possible performance and zero the worst.
If you do not specify a metric explicitly, the default behavior is to automatically use:
MSE : for regression.
F1 : for binary classification
Accuracy : for multiclass classification.
ProblemType (string) --
The problem type.
CompletionCriteria (dict) --
How long a job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates (integer) --
The maximum number of times a training job is allowed to run.
MaxRuntimePerTrainingJobInSeconds (integer) --
The maximum time, in seconds, a job is allowed to run.
MaxAutoMLJobRuntimeInSeconds (integer) --
The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.
{'Environment': {'string': 'string'}}
Returns information about a training job.
Some of the attributes below only appear if the training job successfully starts. If the training job fails, TrainingJobStatus is Failed and, depending on the FailureReason , attributes like TrainingStartTime , TrainingTimeInSeconds , TrainingEndTime , and BillableTimeInSeconds may not be present in the response.
See also: AWS API Documentation
Request Syntax
client.describe_training_job( TrainingJobName='string' )
string
[REQUIRED]
The name of the training job.
dict
Response Syntax
{ 'TrainingJobName': 'string', 'TrainingJobArn': 'string', 'TuningJobArn': 'string', 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'ModelArtifacts': { 'S3ModelArtifacts': 'string' }, 'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'SecondaryStatus': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating', 'FailureReason': 'string', 'HyperParameters': { 'string': 'string' }, 'AlgorithmSpecification': { 'TrainingImage': 'string', 'AlgorithmName': 'string', 'TrainingInputMode': 'Pipe'|'File', 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'EnableSageMakerMetricsTimeSeries': True|False }, 'RoleArn': 'string', 'InputDataConfig': [ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File', 'ShuffleConfig': { 'Seed': 123 } }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, 'ResourceConfig': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' }, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123 }, 'CreationTime': datetime(2015, 1, 1), 'TrainingStartTime': datetime(2015, 1, 1), 'TrainingEndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'SecondaryStatusTransitions': [ { 'Status': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating', 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'StatusMessage': 'string' }, ], 'FinalMetricDataList': [ { 'MetricName': 'string', 'Value': ..., 'Timestamp': datetime(2015, 1, 1) }, ], 'EnableNetworkIsolation': True|False, 'EnableInterContainerTrafficEncryption': True|False, 'EnableManagedSpotTraining': True|False, 'CheckpointConfig': { 'S3Uri': 'string', 'LocalPath': 'string' }, 'TrainingTimeInSeconds': 123, 'BillableTimeInSeconds': 123, 'DebugHookConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string', 'HookParameters': { 'string': 'string' }, 'CollectionConfigurations': [ { 'CollectionName': 'string', 'CollectionParameters': { 'string': 'string' } }, ] }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string' }, 'DebugRuleConfigurations': [ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], 'TensorBoardOutputConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string' }, 'DebugRuleEvaluationStatuses': [ { 'RuleConfigurationName': 'string', 'RuleEvaluationJobArn': 'string', 'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped', 'StatusDetails': 'string', 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'ProfilerConfig': { 'S3OutputPath': 'string', 'ProfilingIntervalInMilliseconds': 123, 'ProfilingParameters': { 'string': 'string' } }, 'ProfilerRuleConfigurations': [ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], 'ProfilerRuleEvaluationStatuses': [ { 'RuleConfigurationName': 'string', 'RuleEvaluationJobArn': 'string', 'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped', 'StatusDetails': 'string', 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'ProfilingStatus': 'Enabled'|'Disabled', 'Environment': { 'string': 'string' } }
Response Structure
(dict) --
TrainingJobName (string) --
Name of the model training job.
TrainingJobArn (string) --
The Amazon Resource Name (ARN) of the training job.
TuningJobArn (string) --
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
LabelingJobArn (string) --
The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
AutoMLJobArn (string) --
The Amazon Resource Name (ARN) of an AutoML job.
ModelArtifacts (dict) --
Information about the Amazon S3 location that is configured for storing model artifacts.
S3ModelArtifacts (string) --
The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz .
TrainingJobStatus (string) --
The status of the training job.
Amazon SageMaker provides the following training job statuses:
InProgress - The training is in progress.
Completed - The training job has completed.
Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.
Stopping - The training job is stopping.
Stopped - The training job has stopped.
For more detailed information, see SecondaryStatus .
SecondaryStatus (string) --
Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition.
Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress
Starting - Starting the training job.
Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training - Training is in progress.
Interrupted - The job stopped because the managed spot training instances were interrupted.
Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.
Completed
Completed - The training job has completed.
Failed
Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .
Stopped
MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.
MaxWaitTimeExceeded - The job stopped because it exceeded the maximum allowed wait time.
Stopped - The training job has stopped.
Stopping
Stopping - Stopping the training job.
Warning
Valid values for SecondaryStatus are subject to change.
We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
FailureReason (string) --
If the training job failed, the reason it failed.
HyperParameters (dict) --
Algorithm-specific parameters.
(string) --
(string) --
AlgorithmSpecification (dict) --
Information about the algorithm used for training, and algorithm metadata.
TrainingImage (string) --
The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
AlgorithmName (string) --
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage .
TrainingInputMode (string) --
The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.
In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.
For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.
MetricDefinitions (list) --
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
(dict) --
Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.
Name (string) --
The name of the metric.
Regex (string) --
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
EnableSageMakerMetricsTimeSeries (boolean) --
To generate and save time-series metrics during training, set to true . The default is false and time-series metrics aren't generated except in the following cases:
You use one of the Amazon SageMaker built-in algorithms
You use one of the following Prebuilt Amazon SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
RoleArn (string) --
The AWS Identity and Access Management (IAM) role configured for the training job.
InputDataConfig (list) --
An array of Channel objects that describes each data input channel.
(dict) --
A channel is a named input source that training algorithms can consume.
ChannelName (string) --
The name of the channel.
DataSource (dict) --
The location of the channel data.
S3DataSource (dict) --
The S3 location of the data source that is associated with a channel.
S3DataType (string) --
If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile , S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.
If you choose AugmentedManifestFile , S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe .
S3Uri (string) --
Depending on the value specified for the S3DataType , identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this: s3://bucketname/exampleprefix
A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri . Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
S3DataDistributionType (string) --
If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated .
If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key . If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key . If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File ), this copies 1/n of the number of objects.
AttributeNames (list) --
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string) --
FileSystemDataSource (dict) --
The file system that is associated with a channel.
FileSystemId (string) --
The file system id.
FileSystemAccessMode (string) --
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
FileSystemType (string) --
The file system type.
DirectoryPath (string) --
The full path to the directory to associate with the channel.
ContentType (string) --
The MIME type of the data.
CompressionType (string) --
If training data is compressed, the compression type. The default value is None . CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
RecordWrapperType (string) --
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
InputMode (string) --
(Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode , Amazon SageMaker uses the value set for TrainingInputMode . Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode.
To use a model for incremental training, choose File input model.
ShuffleConfig (dict) --
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType , this shuffles the results of the S3 key prefix matches. If you use ManifestFile , the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value.
For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
Seed (integer) --
Determines the shuffling order in ShuffleConfig value.
OutputDataConfig (dict) --
The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
KmsKeyId (string) --
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias "alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt . If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig . If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob , CreateTransformJob , or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .
S3OutputPath (string) --
Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix .
ResourceConfig (dict) --
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
InstanceType (string) --
The ML compute instance type.
InstanceCount (integer) --
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB (integer) --
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.
You must specify sufficient ML storage for your scenario.
Note
Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
Note
Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.
For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.
VolumeKmsKeyId (string) --
The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store Volumes.
The VolumeKmsKeyId can be in any of the following formats:
// KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
VpcConfig (dict) --
A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds (list) --
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
(string) --
Subnets (list) --
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
(string) --
StoppingCondition (dict) --
Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
MaxRuntimeInSeconds (integer) --
The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
MaxWaitTimeInSeconds (integer) --
The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds .
CreationTime (datetime) --
A timestamp that indicates when the training job was created.
TrainingStartTime (datetime) --
Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime . The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
TrainingEndTime (datetime) --
Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
LastModifiedTime (datetime) --
A timestamp that indicates when the status of the training job was last modified.
SecondaryStatusTransitions (list) --
A history of all of the secondary statuses that the training job has transitioned through.
(dict) --
An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.
Status (string) --
Contains a secondary status information from a training job.
Status might be one of the following secondary statuses:
InProgress
Starting - Starting the training job.
Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training - Training is in progress.
Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.
Completed
Completed - The training job has completed.
Failed
Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse .
Stopped
MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.
Stopped - The training job has stopped.
Stopping
Stopping - Stopping the training job.
We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
StartTime (datetime) --
A timestamp that shows when the training job transitioned to the current secondary status state.
EndTime (datetime) --
A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
StatusMessage (string) --
A detailed description of the progress within a secondary status.
Amazon SageMaker provides secondary statuses and status messages that apply to each of them:
Starting
Starting the training job.
Launching requested ML instances.
Insufficient capacity error from EC2 while launching instances, retrying!
Launched instance was unhealthy, replacing it!
Preparing the instances for training.
Training
Downloading the training image.
Training image download completed. Training in progress.
Warning
Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.
To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:
TrainingJobStatus - InProgress
SecondaryStatus - Training
StatusMessage - Downloading the training image
FinalMetricDataList (list) --
A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
(dict) --
The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.
MetricName (string) --
The name of the metric.
Value (float) --
The value of the metric.
Timestamp (datetime) --
The date and time that the algorithm emitted the metric.
EnableNetworkIsolation (boolean) --
If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True . If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
EnableInterContainerTrafficEncryption (boolean) --
To encrypt all communications between ML compute instances in distributed training, choose True . Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
EnableManagedSpotTraining (boolean) --
A Boolean indicating whether managed spot training is enabled ( True ) or not ( False ).
CheckpointConfig (dict) --
Contains information about the output location for managed spot training checkpoint data.
S3Uri (string) --
Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix .
LocalPath (string) --
(Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/ .
TrainingTimeInSeconds (integer) --
The training time in seconds.
BillableTimeInSeconds (integer) --
The billable time in seconds. Billable time refers to the absolute wall-clock time.
Multiply BillableTimeInSeconds by the number of instances ( InstanceCount ) in your training cluster to get the total compute time Amazon SageMaker will bill you if you run distributed training. The formula is as follows: BillableTimeInSeconds * InstanceCount .
You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100 . For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.
DebugHookConfig (dict) --
Configuration information for the Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the DebugHookConfig parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
LocalPath (string) --
Path to local storage location for metrics and tensors. Defaults to /opt/ml/output/tensors/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for metrics and tensors.
HookParameters (dict) --
Configuration information for the Debugger hook parameters.
(string) --
(string) --
CollectionConfigurations (list) --
Configuration information for Debugger tensor collections. To learn more about how to configure the CollectionConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(dict) --
Configuration information for the Debugger output tensor collections.
CollectionName (string) --
The name of the tensor collection. The name must be unique relative to other rule configuration names.
CollectionParameters (dict) --
Parameter values for the tensor collection. The allowed parameters are "name" , "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and "save_histogram" .
(string) --
(string) --
ExperimentConfig (dict) --
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName (string) --
The name of an existing experiment to associate the trial component with.
TrialName (string) --
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName (string) --
The display name for the trial component. If this key isn't specified, the display name is the trial component name.
DebugRuleConfigurations (list) --
Configuration information for Debugger rules for debugging output tensors.
(dict) --
Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the DebugRuleConfiguration parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
RuleConfigurationName (string) --
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) --
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a Debugger custom rule for debugging a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
TensorBoardOutputConfig (dict) --
Configuration of storage locations for the Debugger TensorBoard output data.
LocalPath (string) --
Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard .
S3OutputPath (string) --
Path to Amazon S3 storage location for TensorBoard output.
DebugRuleEvaluationStatuses (list) --
Evaluation status of Debugger rules for debugging on a training job.
(dict) --
Information about the status of the rule evaluation.
RuleConfigurationName (string) --
The name of the rule configuration.
RuleEvaluationJobArn (string) --
The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationStatus (string) --
Status of the rule evaluation.
StatusDetails (string) --
Details from the rule evaluation.
LastModifiedTime (datetime) --
Timestamp when the rule evaluation status was last modified.
ProfilerConfig (dict) --
Configuration information for Debugger system monitoring, framework profiling, and storage paths.
S3OutputPath (string) --
Path to Amazon S3 storage location for system and framework metrics.
ProfilingIntervalInMilliseconds (integer) --
A time interval for capturing system metrics in milliseconds. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.
ProfilingParameters (dict) --
Configuration information for capturing framework metrics. Available key strings for different profiling options are DetailedProfilingConfig , PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are configuration structures for the ProfilingParameters parameter. To learn more about how to configure the ProfilingParameters parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job.
(string) --
(string) --
ProfilerRuleConfigurations (list) --
Configuration information for Debugger rules for profiling system and framework metrics.
(dict) --
Configuration information for profiling rules.
RuleConfigurationName (string) --
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath (string) --
Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/ .
S3OutputPath (string) --
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage (string) --
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType (string) --
The instance type to deploy a Debugger custom rule for profiling a training job.
VolumeSizeInGB (integer) --
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters (dict) --
Runtime configuration for rule container.
(string) --
(string) --
ProfilerRuleEvaluationStatuses (list) --
Evaluation status of Debugger rules for profiling on a training job.
(dict) --
Information about the status of the rule evaluation.
RuleConfigurationName (string) --
The name of the rule configuration.
RuleEvaluationJobArn (string) --
The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationStatus (string) --
Status of the rule evaluation.
StatusDetails (string) --
Details from the rule evaluation.
LastModifiedTime (datetime) --
Timestamp when the rule evaluation status was last modified.
ProfilingStatus (string) --
Profiling status of a training job.
Environment (dict) --
The environment variables to set in the Docker container.
(string) --
(string) --
{'AutoMLJobSummaries': {'AutoMLJobSecondaryStatus': {'Completed', 'ExplainabilityError', 'GeneratingExplainabilityReport'}}}
Request a list of jobs.
See also: AWS API Documentation
Request Syntax
client.list_auto_ml_jobs( CreationTimeAfter=datetime(2015, 1, 1), CreationTimeBefore=datetime(2015, 1, 1), LastModifiedTimeAfter=datetime(2015, 1, 1), LastModifiedTimeBefore=datetime(2015, 1, 1), NameContains='string', StatusEquals='Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping', SortOrder='Ascending'|'Descending', SortBy='Name'|'CreationTime'|'Status', MaxResults=123, NextToken='string' )
datetime
Request a list of jobs, using a filter for time.
datetime
Request a list of jobs, using a filter for time.
datetime
Request a list of jobs, using a filter for time.
datetime
Request a list of jobs, using a filter for time.
string
Request a list of jobs, using a search filter for name.
string
Request a list of jobs, using a filter for status.
string
The sort order for the results. The default is Descending.
string
The parameter by which to sort the results. The default is AutoMLJobName.
integer
Request a list of jobs up to a specified limit.
string
If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
dict
Response Syntax
{ 'AutoMLJobSummaries': [ { 'AutoMLJobName': 'string', 'AutoMLJobArn': 'string', 'AutoMLJobStatus': 'Completed'|'InProgress'|'Failed'|'Stopped'|'Stopping', 'AutoMLJobSecondaryStatus': 'Starting'|'AnalyzingData'|'FeatureEngineering'|'ModelTuning'|'MaxCandidatesReached'|'Failed'|'Stopped'|'MaxAutoMLJobRuntimeReached'|'Stopping'|'CandidateDefinitionsGenerated'|'GeneratingExplainabilityReport'|'Completed'|'ExplainabilityError', 'CreationTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'FailureReason': 'string' }, ], 'NextToken': 'string' }
Response Structure
(dict) --
AutoMLJobSummaries (list) --
Returns a summary list of jobs.
(dict) --
Provides a summary about a job.
AutoMLJobName (string) --
The name of the object you are requesting.
AutoMLJobArn (string) --
The ARN of the job.
AutoMLJobStatus (string) --
The job's status.
AutoMLJobSecondaryStatus (string) --
The job's secondary status.
CreationTime (datetime) --
When the job was created.
EndTime (datetime) --
The end time of an AutoML job.
LastModifiedTime (datetime) --
When the job was last modified.
FailureReason (string) --
The failure reason of a job.
NextToken (string) --
If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
{'Results': {'TrainingJob': {'Environment': {'string': 'string'}}, 'TrialComponent': {'SourceDetail': {'TrainingJob': {'Environment': {'string': 'string'}}}}}}
Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.
You can query against the following value types: numeric, text, Boolean, and timestamp.
See also: AWS API Documentation
Request Syntax
client.search( Resource='TrainingJob'|'Experiment'|'ExperimentTrial'|'ExperimentTrialComponent'|'Endpoint'|'ModelPackage'|'ModelPackageGroup'|'Pipeline'|'PipelineExecution'|'FeatureGroup', SearchExpression={ 'Filters': [ { 'Name': 'string', 'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In', 'Value': 'string' }, ], 'NestedFilters': [ { 'NestedPropertyName': 'string', 'Filters': [ { 'Name': 'string', 'Operator': 'Equals'|'NotEquals'|'GreaterThan'|'GreaterThanOrEqualTo'|'LessThan'|'LessThanOrEqualTo'|'Contains'|'Exists'|'NotExists'|'In', 'Value': 'string' }, ] }, ], 'SubExpressions': [ {'... recursive ...'}, ], 'Operator': 'And'|'Or' }, SortBy='string', SortOrder='Ascending'|'Descending', NextToken='string', MaxResults=123 )
string
[REQUIRED]
The name of the Amazon SageMaker resource to search for.
dict
A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions , NestedFilters , and Filters that can be included in a SearchExpression object is 50.
Filters (list) --
A list of filter objects.
(dict) --
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.
In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form Tags.<key> .
Name (string) -- [REQUIRED]
A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.
Operator (string) --
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of Name equals Value .
NotEquals
The value of Name doesn't equal Value .
Exists
The Name property exists.
NotExists
The Name property does not exist.
GreaterThan
The value of Name is greater than Value . Not supported for text properties.
GreaterThanOrEqualTo
The value of Name is greater than or equal to Value . Not supported for text properties.
LessThan
The value of Name is less than Value . Not supported for text properties.
LessThanOrEqualTo
The value of Name is less than or equal to Value . Not supported for text properties.
In
The value of Name is one of the comma delimited strings in Value . Only supported for text properties.
Contains
The value of Name contains the string Value . Only supported for text properties.
A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "
Value (string) --
A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
NestedFilters (list) --
A list of nested filter objects.
(dict) --
A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.
For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:
'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
NestedPropertyName (string) -- [REQUIRED]
The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig .
Filters (list) -- [REQUIRED]
A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri .
(dict) --
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a Value , but not an Operator , Amazon SageMaker uses the equals operator.
In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form "Metrics.<name>" , where <name> is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9" :
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form "HyperParameters.<name>" . Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a "learning_rate" hyperparameter that is less than "0.5" :
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form Tags.<key> .
Name (string) -- [REQUIRED]
A resource property name. For example, TrainingJobName . For valid property names, see SearchRecord. You must specify a valid property for the resource.
Operator (string) --
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of Name equals Value .
NotEquals
The value of Name doesn't equal Value .
Exists
The Name property exists.
NotExists
The Name property does not exist.
GreaterThan
The value of Name is greater than Value . Not supported for text properties.
GreaterThanOrEqualTo
The value of Name is greater than or equal to Value . Not supported for text properties.
LessThan
The value of Name is less than Value . Not supported for text properties.
LessThanOrEqualTo
The value of Name is less than or equal to Value . Not supported for text properties.
In
The value of Name is one of the comma delimited strings in Value . Only supported for text properties.
Contains
The value of Name contains the string Value . Only supported for text properties.
A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A SearchExpression can include only one Contains operator for all other values of Name . In these cases, if you include multiple Contains operators in the SearchExpression , the result is the following error message: " 'CONTAINS' operator usage limit of 1 exceeded. "
Value (string) --
A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
SubExpressions (list) --
A list of search expression objects.
(dict) --
A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements.
A SearchExpression contains the following components:
A list of Filter objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
A list of NestedFilter objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
A list of SearchExpression objects. A search expression object can be nested in a list of search expression objects.
A Boolean operator: And or Or .
Operator (string) --
A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And . If only a single conditional statement needs to be true for the entire search expression to be true, specify Or . The default value is And .
string
The name of the resource property used to sort the SearchResults . The default is LastModifiedTime .
string
How SearchResults are ordered. Valid values are Ascending or Descending . The default is Descending .
string
If more than MaxResults resources match the specified SearchExpression , the response includes a NextToken . The NextToken can be passed to the next SearchRequest to continue retrieving results.
integer
The maximum number of results to return.
dict
Response Syntax
{ 'Results': [ { 'TrainingJob': { 'TrainingJobName': 'string', 'TrainingJobArn': 'string', 'TuningJobArn': 'string', 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'ModelArtifacts': { 'S3ModelArtifacts': 'string' }, 'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'SecondaryStatus': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating', 'FailureReason': 'string', 'HyperParameters': { 'string': 'string' }, 'AlgorithmSpecification': { 'TrainingImage': 'string', 'AlgorithmName': 'string', 'TrainingInputMode': 'Pipe'|'File', 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'EnableSageMakerMetricsTimeSeries': True|False }, 'RoleArn': 'string', 'InputDataConfig': [ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File', 'ShuffleConfig': { 'Seed': 123 } }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, 'ResourceConfig': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' }, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123 }, 'CreationTime': datetime(2015, 1, 1), 'TrainingStartTime': datetime(2015, 1, 1), 'TrainingEndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'SecondaryStatusTransitions': [ { 'Status': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating', 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'StatusMessage': 'string' }, ], 'FinalMetricDataList': [ { 'MetricName': 'string', 'Value': ..., 'Timestamp': datetime(2015, 1, 1) }, ], 'EnableNetworkIsolation': True|False, 'EnableInterContainerTrafficEncryption': True|False, 'EnableManagedSpotTraining': True|False, 'CheckpointConfig': { 'S3Uri': 'string', 'LocalPath': 'string' }, 'TrainingTimeInSeconds': 123, 'BillableTimeInSeconds': 123, 'DebugHookConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string', 'HookParameters': { 'string': 'string' }, 'CollectionConfigurations': [ { 'CollectionName': 'string', 'CollectionParameters': { 'string': 'string' } }, ] }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string' }, 'DebugRuleConfigurations': [ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], 'TensorBoardOutputConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string' }, 'DebugRuleEvaluationStatuses': [ { 'RuleConfigurationName': 'string', 'RuleEvaluationJobArn': 'string', 'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped', 'StatusDetails': 'string', 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'Environment': { 'string': 'string' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'Experiment': { 'ExperimentName': 'string', 'ExperimentArn': 'string', 'DisplayName': 'string', 'Source': { 'SourceArn': 'string', 'SourceType': 'string' }, 'Description': 'string', 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'Trial': { 'TrialName': 'string', 'TrialArn': 'string', 'DisplayName': 'string', 'ExperimentName': 'string', 'Source': { 'SourceArn': 'string', 'SourceType': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'MetadataProperties': { 'CommitId': 'string', 'Repository': 'string', 'GeneratedBy': 'string', 'ProjectId': 'string' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ], 'TrialComponentSummaries': [ { 'TrialComponentName': 'string', 'TrialComponentArn': 'string', 'TrialComponentSource': { 'SourceArn': 'string', 'SourceType': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' } }, ] }, 'TrialComponent': { 'TrialComponentName': 'string', 'DisplayName': 'string', 'TrialComponentArn': 'string', 'Source': { 'SourceArn': 'string', 'SourceType': 'string' }, 'Status': { 'PrimaryStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'Message': 'string' }, 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'Parameters': { 'string': { 'StringValue': 'string', 'NumberValue': 123.0 } }, 'InputArtifacts': { 'string': { 'MediaType': 'string', 'Value': 'string' } }, 'OutputArtifacts': { 'string': { 'MediaType': 'string', 'Value': 'string' } }, 'Metrics': [ { 'MetricName': 'string', 'SourceArn': 'string', 'TimeStamp': datetime(2015, 1, 1), 'Max': 123.0, 'Min': 123.0, 'Last': 123.0, 'Count': 123, 'Avg': 123.0, 'StdDev': 123.0 }, ], 'MetadataProperties': { 'CommitId': 'string', 'Repository': 'string', 'GeneratedBy': 'string', 'ProjectId': 'string' }, 'SourceDetail': { 'SourceArn': 'string', 'TrainingJob': { 'TrainingJobName': 'string', 'TrainingJobArn': 'string', 'TuningJobArn': 'string', 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'ModelArtifacts': { 'S3ModelArtifacts': 'string' }, 'TrainingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'SecondaryStatus': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating', 'FailureReason': 'string', 'HyperParameters': { 'string': 'string' }, 'AlgorithmSpecification': { 'TrainingImage': 'string', 'AlgorithmName': 'string', 'TrainingInputMode': 'Pipe'|'File', 'MetricDefinitions': [ { 'Name': 'string', 'Regex': 'string' }, ], 'EnableSageMakerMetricsTimeSeries': True|False }, 'RoleArn': 'string', 'InputDataConfig': [ { 'ChannelName': 'string', 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'AttributeNames': [ 'string', ] }, 'FileSystemDataSource': { 'FileSystemId': 'string', 'FileSystemAccessMode': 'rw'|'ro', 'FileSystemType': 'EFS'|'FSxLustre', 'DirectoryPath': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'RecordWrapperType': 'None'|'RecordIO', 'InputMode': 'Pipe'|'File', 'ShuffleConfig': { 'Seed': 123 } }, ], 'OutputDataConfig': { 'KmsKeyId': 'string', 'S3OutputPath': 'string' }, 'ResourceConfig': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.p3dn.24xlarge'|'ml.p4d.24xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5n.xlarge'|'ml.c5n.2xlarge'|'ml.c5n.4xlarge'|'ml.c5n.9xlarge'|'ml.c5n.18xlarge', 'InstanceCount': 123, 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' }, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123, 'MaxWaitTimeInSeconds': 123 }, 'CreationTime': datetime(2015, 1, 1), 'TrainingStartTime': datetime(2015, 1, 1), 'TrainingEndTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'SecondaryStatusTransitions': [ { 'Status': 'Starting'|'LaunchingMLInstances'|'PreparingTrainingStack'|'Downloading'|'DownloadingTrainingImage'|'Training'|'Uploading'|'Stopping'|'Stopped'|'MaxRuntimeExceeded'|'Completed'|'Failed'|'Interrupted'|'MaxWaitTimeExceeded'|'Updating', 'StartTime': datetime(2015, 1, 1), 'EndTime': datetime(2015, 1, 1), 'StatusMessage': 'string' }, ], 'FinalMetricDataList': [ { 'MetricName': 'string', 'Value': ..., 'Timestamp': datetime(2015, 1, 1) }, ], 'EnableNetworkIsolation': True|False, 'EnableInterContainerTrafficEncryption': True|False, 'EnableManagedSpotTraining': True|False, 'CheckpointConfig': { 'S3Uri': 'string', 'LocalPath': 'string' }, 'TrainingTimeInSeconds': 123, 'BillableTimeInSeconds': 123, 'DebugHookConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string', 'HookParameters': { 'string': 'string' }, 'CollectionConfigurations': [ { 'CollectionName': 'string', 'CollectionParameters': { 'string': 'string' } }, ] }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string' }, 'DebugRuleConfigurations': [ { 'RuleConfigurationName': 'string', 'LocalPath': 'string', 'S3OutputPath': 'string', 'RuleEvaluatorImage': 'string', 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'RuleParameters': { 'string': 'string' } }, ], 'TensorBoardOutputConfig': { 'LocalPath': 'string', 'S3OutputPath': 'string' }, 'DebugRuleEvaluationStatuses': [ { 'RuleConfigurationName': 'string', 'RuleEvaluationJobArn': 'string', 'RuleEvaluationStatus': 'InProgress'|'NoIssuesFound'|'IssuesFound'|'Error'|'Stopping'|'Stopped', 'StatusDetails': 'string', 'LastModifiedTime': datetime(2015, 1, 1) }, ], 'Environment': { 'string': 'string' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'ProcessingJob': { 'ProcessingInputs': [ { 'InputName': 'string', 'AppManaged': True|False, 'S3Input': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3DataType': 'ManifestFile'|'S3Prefix', 'S3InputMode': 'Pipe'|'File', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'S3CompressionType': 'None'|'Gzip' }, 'DatasetDefinition': { 'AthenaDatasetDefinition': { 'Catalog': 'string', 'Database': 'string', 'QueryString': 'string', 'WorkGroup': 'string', 'OutputS3Uri': 'string', 'KmsKeyId': 'string', 'OutputFormat': 'PARQUET'|'ORC'|'AVRO'|'JSON'|'TEXTFILE', 'OutputCompression': 'GZIP'|'SNAPPY'|'ZLIB' }, 'RedshiftDatasetDefinition': { 'ClusterId': 'string', 'Database': 'string', 'DbUser': 'string', 'QueryString': 'string', 'ClusterRoleArn': 'string', 'OutputS3Uri': 'string', 'KmsKeyId': 'string', 'OutputFormat': 'PARQUET'|'CSV', 'OutputCompression': 'None'|'GZIP'|'BZIP2'|'ZSTD'|'SNAPPY' }, 'LocalPath': 'string', 'DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'InputMode': 'Pipe'|'File' } }, ], 'ProcessingOutputConfig': { 'Outputs': [ { 'OutputName': 'string', 'S3Output': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3UploadMode': 'Continuous'|'EndOfJob' }, 'FeatureStoreOutput': { 'FeatureGroupName': 'string' }, 'AppManaged': True|False }, ], 'KmsKeyId': 'string' }, 'ProcessingJobName': 'string', 'ProcessingResources': { 'ClusterConfig': { 'InstanceCount': 123, 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' } }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123 }, 'AppSpecification': { 'ImageUri': 'string', 'ContainerEntrypoint': [ 'string', ], 'ContainerArguments': [ 'string', ] }, 'Environment': { 'string': 'string' }, 'NetworkConfig': { 'EnableInterContainerTrafficEncryption': True|False, 'EnableNetworkIsolation': True|False, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] } }, 'RoleArn': 'string', 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string' }, 'ProcessingJobArn': 'string', 'ProcessingJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'ExitMessage': 'string', 'FailureReason': 'string', 'ProcessingEndTime': datetime(2015, 1, 1), 'ProcessingStartTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'MonitoringScheduleArn': 'string', 'AutoMLJobArn': 'string', 'TrainingJobArn': 'string', 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'TransformJob': { 'TransformJobName': 'string', 'TransformJobArn': 'string', 'TransformJobStatus': 'InProgress'|'Completed'|'Failed'|'Stopping'|'Stopped', 'FailureReason': 'string', 'ModelName': 'string', 'MaxConcurrentTransforms': 123, 'ModelClientConfig': { 'InvocationsTimeoutInSeconds': 123, 'InvocationsMaxRetries': 123 }, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'TransformStartTime': datetime(2015, 1, 1), 'TransformEndTime': datetime(2015, 1, 1), 'LabelingJobArn': 'string', 'AutoMLJobArn': 'string', 'DataProcessing': { 'InputFilter': 'string', 'OutputFilter': 'string', 'JoinSource': 'Input'|'None' }, 'ExperimentConfig': { 'ExperimentName': 'string', 'TrialName': 'string', 'TrialComponentDisplayName': 'string' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] } }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ], 'Parents': [ { 'TrialName': 'string', 'ExperimentName': 'string' }, ] }, 'Endpoint': { 'EndpointName': 'string', 'EndpointArn': 'string', 'EndpointConfigName': 'string', 'ProductionVariants': [ { 'VariantName': 'string', 'DeployedImages': [ { 'SpecifiedImage': 'string', 'ResolvedImage': 'string', 'ResolutionTime': datetime(2015, 1, 1) }, ], 'CurrentWeight': ..., 'DesiredWeight': ..., 'CurrentInstanceCount': 123, 'DesiredInstanceCount': 123 }, ], 'DataCaptureConfig': { 'EnableCapture': True|False, 'CaptureStatus': 'Started'|'Stopped', 'CurrentSamplingPercentage': 123, 'DestinationS3Uri': 'string', 'KmsKeyId': 'string' }, 'EndpointStatus': 'OutOfService'|'Creating'|'Updating'|'SystemUpdating'|'RollingBack'|'InService'|'Deleting'|'Failed', 'FailureReason': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'MonitoringSchedules': [ { 'MonitoringScheduleArn': 'string', 'MonitoringScheduleName': 'string', 'MonitoringScheduleStatus': 'Pending'|'Failed'|'Scheduled'|'Stopped', 'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability', 'FailureReason': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'MonitoringScheduleConfig': { 'ScheduleConfig': { 'ScheduleExpression': 'string' }, 'MonitoringJobDefinition': { 'BaselineConfig': { 'BaseliningJobName': 'string', 'ConstraintsResource': { 'S3Uri': 'string' }, 'StatisticsResource': { 'S3Uri': 'string' } }, 'MonitoringInputs': [ { 'EndpointInput': { 'EndpointName': 'string', 'LocalPath': 'string', 'S3InputMode': 'Pipe'|'File', 'S3DataDistributionType': 'FullyReplicated'|'ShardedByS3Key', 'FeaturesAttribute': 'string', 'InferenceAttribute': 'string', 'ProbabilityAttribute': 'string', 'ProbabilityThresholdAttribute': 123.0, 'StartTimeOffset': 'string', 'EndTimeOffset': 'string' } }, ], 'MonitoringOutputConfig': { 'MonitoringOutputs': [ { 'S3Output': { 'S3Uri': 'string', 'LocalPath': 'string', 'S3UploadMode': 'Continuous'|'EndOfJob' } }, ], 'KmsKeyId': 'string' }, 'MonitoringResources': { 'ClusterConfig': { 'InstanceCount': 123, 'InstanceType': 'ml.t3.medium'|'ml.t3.large'|'ml.t3.xlarge'|'ml.t3.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.8xlarge'|'ml.r5.12xlarge'|'ml.r5.16xlarge'|'ml.r5.24xlarge', 'VolumeSizeInGB': 123, 'VolumeKmsKeyId': 'string' } }, 'MonitoringAppSpecification': { 'ImageUri': 'string', 'ContainerEntrypoint': [ 'string', ], 'ContainerArguments': [ 'string', ], 'RecordPreprocessorSourceUri': 'string', 'PostAnalyticsProcessorSourceUri': 'string' }, 'StoppingCondition': { 'MaxRuntimeInSeconds': 123 }, 'Environment': { 'string': 'string' }, 'NetworkConfig': { 'EnableInterContainerTrafficEncryption': True|False, 'EnableNetworkIsolation': True|False, 'VpcConfig': { 'SecurityGroupIds': [ 'string', ], 'Subnets': [ 'string', ] } }, 'RoleArn': 'string' }, 'MonitoringJobDefinitionName': 'string', 'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability' }, 'EndpointName': 'string', 'LastMonitoringExecutionSummary': { 'MonitoringScheduleName': 'string', 'ScheduledTime': datetime(2015, 1, 1), 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'MonitoringExecutionStatus': 'Pending'|'Completed'|'CompletedWithViolations'|'InProgress'|'Failed'|'Stopping'|'Stopped', 'ProcessingJobArn': 'string', 'EndpointName': 'string', 'FailureReason': 'string', 'MonitoringJobDefinitionName': 'string', 'MonitoringType': 'DataQuality'|'ModelQuality'|'ModelBias'|'ModelExplainability' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, ], 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'ModelPackage': { 'ModelPackageName': 'string', 'ModelPackageGroupName': 'string', 'ModelPackageVersion': 123, 'ModelPackageArn': 'string', 'ModelPackageDescription': 'string', 'CreationTime': datetime(2015, 1, 1), 'InferenceSpecification': { 'Containers': [ { 'ContainerHostname': 'string', 'Image': 'string', 'ImageDigest': 'string', 'ModelDataUrl': 'string', 'ProductId': 'string' }, ], 'SupportedTransformInstanceTypes': [ 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge', ], 'SupportedRealtimeInferenceInstanceTypes': [ 'ml.t2.medium'|'ml.t2.large'|'ml.t2.xlarge'|'ml.t2.2xlarge'|'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge'|'ml.m5d.large'|'ml.m5d.xlarge'|'ml.m5d.2xlarge'|'ml.m5d.4xlarge'|'ml.m5d.12xlarge'|'ml.m5d.24xlarge'|'ml.c4.large'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.large'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.c5d.large'|'ml.c5d.xlarge'|'ml.c5d.2xlarge'|'ml.c5d.4xlarge'|'ml.c5d.9xlarge'|'ml.c5d.18xlarge'|'ml.g4dn.xlarge'|'ml.g4dn.2xlarge'|'ml.g4dn.4xlarge'|'ml.g4dn.8xlarge'|'ml.g4dn.12xlarge'|'ml.g4dn.16xlarge'|'ml.r5.large'|'ml.r5.xlarge'|'ml.r5.2xlarge'|'ml.r5.4xlarge'|'ml.r5.12xlarge'|'ml.r5.24xlarge'|'ml.r5d.large'|'ml.r5d.xlarge'|'ml.r5d.2xlarge'|'ml.r5d.4xlarge'|'ml.r5d.12xlarge'|'ml.r5d.24xlarge'|'ml.inf1.xlarge'|'ml.inf1.2xlarge'|'ml.inf1.6xlarge'|'ml.inf1.24xlarge', ], 'SupportedContentTypes': [ 'string', ], 'SupportedResponseMIMETypes': [ 'string', ] }, 'SourceAlgorithmSpecification': { 'SourceAlgorithms': [ { 'ModelDataUrl': 'string', 'AlgorithmName': 'string' }, ] }, 'ValidationSpecification': { 'ValidationRole': 'string', 'ValidationProfiles': [ { 'ProfileName': 'string', 'TransformJobDefinition': { 'MaxConcurrentTransforms': 123, 'MaxPayloadInMB': 123, 'BatchStrategy': 'MultiRecord'|'SingleRecord', 'Environment': { 'string': 'string' }, 'TransformInput': { 'DataSource': { 'S3DataSource': { 'S3DataType': 'ManifestFile'|'S3Prefix'|'AugmentedManifestFile', 'S3Uri': 'string' } }, 'ContentType': 'string', 'CompressionType': 'None'|'Gzip', 'SplitType': 'None'|'Line'|'RecordIO'|'TFRecord' }, 'TransformOutput': { 'S3OutputPath': 'string', 'Accept': 'string', 'AssembleWith': 'None'|'Line', 'KmsKeyId': 'string' }, 'TransformResources': { 'InstanceType': 'ml.m4.xlarge'|'ml.m4.2xlarge'|'ml.m4.4xlarge'|'ml.m4.10xlarge'|'ml.m4.16xlarge'|'ml.c4.xlarge'|'ml.c4.2xlarge'|'ml.c4.4xlarge'|'ml.c4.8xlarge'|'ml.p2.xlarge'|'ml.p2.8xlarge'|'ml.p2.16xlarge'|'ml.p3.2xlarge'|'ml.p3.8xlarge'|'ml.p3.16xlarge'|'ml.c5.xlarge'|'ml.c5.2xlarge'|'ml.c5.4xlarge'|'ml.c5.9xlarge'|'ml.c5.18xlarge'|'ml.m5.large'|'ml.m5.xlarge'|'ml.m5.2xlarge'|'ml.m5.4xlarge'|'ml.m5.12xlarge'|'ml.m5.24xlarge', 'InstanceCount': 123, 'VolumeKmsKeyId': 'string' } } }, ] }, 'ModelPackageStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting', 'ModelPackageStatusDetails': { 'ValidationStatuses': [ { 'Name': 'string', 'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed', 'FailureReason': 'string' }, ], 'ImageScanStatuses': [ { 'Name': 'string', 'Status': 'NotStarted'|'InProgress'|'Completed'|'Failed', 'FailureReason': 'string' }, ] }, 'CertifyForMarketplace': True|False, 'ModelApprovalStatus': 'Approved'|'Rejected'|'PendingManualApproval', 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'MetadataProperties': { 'CommitId': 'string', 'Repository': 'string', 'GeneratedBy': 'string', 'ProjectId': 'string' }, 'ModelMetrics': { 'ModelQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'ModelDataQuality': { 'Statistics': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' }, 'Constraints': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Bias': { 'Report': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } }, 'Explainability': { 'Report': { 'ContentType': 'string', 'ContentDigest': 'string', 'S3Uri': 'string' } } }, 'LastModifiedTime': datetime(2015, 1, 1), 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'ApprovalDescription': 'string', 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'ModelPackageGroup': { 'ModelPackageGroupName': 'string', 'ModelPackageGroupArn': 'string', 'ModelPackageGroupDescription': 'string', 'CreationTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'ModelPackageGroupStatus': 'Pending'|'InProgress'|'Completed'|'Failed'|'Deleting'|'DeleteFailed', 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'Pipeline': { 'PipelineArn': 'string', 'PipelineName': 'string', 'PipelineDisplayName': 'string', 'PipelineDescription': 'string', 'RoleArn': 'string', 'PipelineStatus': 'Active', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'LastRunTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] }, 'PipelineExecution': { 'PipelineArn': 'string', 'PipelineExecutionArn': 'string', 'PipelineExecutionDisplayName': 'string', 'PipelineExecutionStatus': 'Executing'|'Stopping'|'Stopped'|'Failed'|'Succeeded', 'PipelineExecutionDescription': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastModifiedTime': datetime(2015, 1, 1), 'CreatedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'LastModifiedBy': { 'UserProfileArn': 'string', 'UserProfileName': 'string', 'DomainId': 'string' }, 'PipelineParameters': [ { 'Name': 'string', 'Value': 'string' }, ] }, 'FeatureGroup': { 'FeatureGroupArn': 'string', 'FeatureGroupName': 'string', 'RecordIdentifierFeatureName': 'string', 'EventTimeFeatureName': 'string', 'FeatureDefinitions': [ { 'FeatureName': 'string', 'FeatureType': 'Integral'|'Fractional'|'String' }, ], 'CreationTime': datetime(2015, 1, 1), 'OnlineStoreConfig': { 'SecurityConfig': { 'KmsKeyId': 'string' }, 'EnableOnlineStore': True|False }, 'OfflineStoreConfig': { 'S3StorageConfig': { 'S3Uri': 'string', 'KmsKeyId': 'string', 'ResolvedOutputS3Uri': 'string' }, 'DisableGlueTableCreation': True|False, 'DataCatalogConfig': { 'TableName': 'string', 'Catalog': 'string', 'Database': 'string' } }, 'RoleArn': 'string', 'FeatureGroupStatus': 'Creating'|'Created'|'CreateFailed'|'Deleting'|'DeleteFailed', 'OfflineStoreStatus': { 'Status': 'Active'|'Blocked'|'Disabled', 'BlockedReason': 'string' }, 'FailureReason': 'string', 'Description': 'string', 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] } }, ], 'NextToken': 'string' } **Response Structure** :: # This section is too large to render. # Please see the AWS API Documentation linked below. `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Search>`_