Amazon Comprehend

2021/09/14 - Amazon Comprehend - 30 updated api methods

Changes  Amazon Comprehend now allows you to train and run PDF and Word documents for custom entity recognition. With PDF and Word formats, you can extract information from documents containing headers, lists and tables.

CreateDocumentClassifier (updated) Link ¶
Changes (request)
{'InputDataConfig': {'AugmentedManifests': {'AnnotationDataS3Uri': 'string',
                                            'DocumentType': 'PLAIN_TEXT_DOCUMENT '
                                                            '| '
                                                            'SEMI_STRUCTURED_DOCUMENT',
                                            'SourceDocumentsS3Uri': 'string'}}}

Creates a new document classifier that you can use to categorize documents. To create a classifier, you provide a set of training documents that labeled with the categories that you want to use. After the classifier is trained you can use it to categorize a set of labeled documents into the categories. For more information, see how-document-classification.

See also: AWS API Documentation

Request Syntax

client.create_document_classifier(
    DocumentClassifierName='string',
    DataAccessRoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    InputDataConfig={
        'DataFormat': 'COMPREHEND_CSV'|'AUGMENTED_MANIFEST',
        'S3Uri': 'string',
        'LabelDelimiter': 'string',
        'AugmentedManifests': [
            {
                'S3Uri': 'string',
                'AttributeNames': [
                    'string',
                ],
                'AnnotationDataS3Uri': 'string',
                'SourceDocumentsS3Uri': 'string',
                'DocumentType': 'PLAIN_TEXT_DOCUMENT'|'SEMI_STRUCTURED_DOCUMENT'
            },
        ]
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    ClientRequestToken='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Mode='MULTI_CLASS'|'MULTI_LABEL',
    ModelKmsKeyId='string'
)
type DocumentClassifierName:

string

param DocumentClassifierName:

[REQUIRED]

The name of the document classifier.

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

type Tags:

list

param Tags:

Tags to be associated with the document classifier being created. A tag is a key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • DataFormat (string) --

    The format of your training data:

    • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.

    • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels. If you use this value, you must provide the AugmentedManifests parameter in your request.

    If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

  • S3Uri (string) --

    The Amazon S3 URI for the input data. The S3 bucket must be in the same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

    This parameter is required if you set DataFormat to COMPREHEND_CSV.

  • LabelDelimiter (string) --

    Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it's an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.

  • AugmentedManifests (list) --

    A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

    This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

    • (dict) --

      An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

      • S3Uri (string) -- [REQUIRED]

        The Amazon S3 location of the augmented manifest file.

      • AttributeNames (list) -- [REQUIRED]

        The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

        If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

        If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

        • (string) --

      • AnnotationDataS3Uri (string) --

        The S3 prefix to the annotation files that are referred in the augmented manifest file.

      • SourceDocumentsS3Uri (string) --

        The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

      • DocumentType (string) --

        The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

        • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

        • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

type OutputDataConfig:

dict

param OutputDataConfig:

Enables the addition of output results configuration parameters for custom classifier jobs.

  • S3Uri (string) --

    When you use the OutputDataConfig object while creating a custom classifier, you specify the Amazon S3 location where you want to write the confusion matrix. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of this output file.

    When the custom classifier job is finished, the service creates the output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the confusion matrix.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

The language of the input documents. You can specify any of the following languages supported by Amazon Comprehend: German ("de"), English ("en"), Spanish ("es"), French ("fr"), Italian ("it"), or Portuguese ("pt"). All documents must be in the same language.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your custom classifier. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Mode:

string

param Mode:

Indicates the mode in which the classifier will be trained. The classifier can be trained in multi-class mode, which identifies one and only one class for each document, or multi-label mode, which identifies one or more labels for each document. In multi-label mode, multiple labels for an individual document are separated by a delimiter. The default delimiter between labels is a pipe (|).

type ModelKmsKeyId:

string

param ModelKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

rtype:

dict

returns:

Response Syntax

{
    'DocumentClassifierArn': 'string'
}

Response Structure

  • (dict) --

    • DocumentClassifierArn (string) --

      The Amazon Resource Name (ARN) that identifies the document classifier.

CreateEntityRecognizer (updated) Link ¶
Changes (request)
{'InputDataConfig': {'AugmentedManifests': {'AnnotationDataS3Uri': 'string',
                                            'DocumentType': 'PLAIN_TEXT_DOCUMENT '
                                                            '| '
                                                            'SEMI_STRUCTURED_DOCUMENT',
                                            'SourceDocumentsS3Uri': 'string'}}}

Creates an entity recognizer using submitted files. After your CreateEntityRecognizer request is submitted, you can check job status using the API.

See also: AWS API Documentation

Request Syntax

client.create_entity_recognizer(
    RecognizerName='string',
    DataAccessRoleArn='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    InputDataConfig={
        'DataFormat': 'COMPREHEND_CSV'|'AUGMENTED_MANIFEST',
        'EntityTypes': [
            {
                'Type': 'string'
            },
        ],
        'Documents': {
            'S3Uri': 'string'
        },
        'Annotations': {
            'S3Uri': 'string'
        },
        'EntityList': {
            'S3Uri': 'string'
        },
        'AugmentedManifests': [
            {
                'S3Uri': 'string',
                'AttributeNames': [
                    'string',
                ],
                'AnnotationDataS3Uri': 'string',
                'SourceDocumentsS3Uri': 'string',
                'DocumentType': 'PLAIN_TEXT_DOCUMENT'|'SEMI_STRUCTURED_DOCUMENT'
            },
        ]
    },
    ClientRequestToken='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    ModelKmsKeyId='string'
)
type RecognizerName:

string

param RecognizerName:

[REQUIRED]

The name given to the newly created recognizer. Recognizer names can be a maximum of 256 characters. Alphanumeric characters, hyphens (-) and underscores (_) are allowed. The name must be unique in the account/region.

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

type Tags:

list

param Tags:

Tags to be associated with the entity recognizer being created. A tag is a key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data. The S3 bucket containing the input data must be located in the same region as the entity recognizer being created.

  • DataFormat (string) --

    The format of your training data:

    • COMPREHEND_CSV: A CSV file that supplements your training documents. The CSV file contains information about the custom entities that your trained model will detect. The required format of the file depends on whether you are providing annotations or an entity list. If you use this value, you must provide your CSV file by using either the Annotations or EntityList parameters. You must provide your training documents by using the Documents parameter.

    • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its labels. Each label annotates a named entity in the training document. If you use this value, you must provide the AugmentedManifests parameter in your request.

    If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

  • EntityTypes (list) -- [REQUIRED]

    The entity types in the labeled training data that Amazon Comprehend uses to train the custom entity recognizer. Any entity types that you don't specify are ignored.

    A maximum of 25 entity types can be used at one time to train an entity recognizer. Entity types must not contain the following invalid characters: n (line break), \n (escaped line break), r (carriage return), \r (escaped carriage return), t (tab), \t (escaped tab), space, and , (comma).

    • (dict) --

      An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.

      • Type (string) -- [REQUIRED]

        An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.

        Entity types must not contain the following invalid characters: n (line break), \n (escaped line break, r (carriage return), \r (escaped carriage return), t (tab), \t (escaped tab), space, and , (comma).

  • Documents (dict) --

    The S3 location of the folder that contains the training documents for your custom entity recognizer.

    This parameter is required if you set DataFormat to COMPREHEND_CSV.

    • S3Uri (string) -- [REQUIRED]

      Specifies the Amazon S3 location where the training documents for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

  • Annotations (dict) --

    The S3 location of the CSV file that annotates your training documents.

    • S3Uri (string) -- [REQUIRED]

      Specifies the Amazon S3 location where the annotations for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

  • EntityList (dict) --

    The S3 location of the CSV file that has the entity list for your custom entity recognizer.

    • S3Uri (string) -- [REQUIRED]

      Specifies the Amazon S3 location where the entity list is located. The URI must be in the same region as the API endpoint that you are calling.

  • AugmentedManifests (list) --

    A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

    This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

    • (dict) --

      An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

      • S3Uri (string) -- [REQUIRED]

        The Amazon S3 location of the augmented manifest file.

      • AttributeNames (list) -- [REQUIRED]

        The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

        If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

        If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

        • (string) --

      • AnnotationDataS3Uri (string) --

        The S3 prefix to the annotation files that are referred in the augmented manifest file.

      • SourceDocumentsS3Uri (string) --

        The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

      • DocumentType (string) --

        The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

        • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

        • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

You can specify any of the following languages supported by Amazon Comprehend: English ("en"), Spanish ("es"), French ("fr"), Italian ("it"), German ("de"), or Portuguese ("pt"). All documents must be in the same language.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your custom entity recognizer. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type ModelKmsKeyId:

string

param ModelKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

rtype:

dict

returns:

Response Syntax

{
    'EntityRecognizerArn': 'string'
}

Response Structure

  • (dict) --

    • EntityRecognizerArn (string) --

      The Amazon Resource Name (ARN) that identifies the entity recognizer.

DescribeDocumentClassificationJob (updated) Link ¶
Changes (response)
{'DocumentClassificationJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                            '| '
                                                                                                            'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                      'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                          '| '
                                                                                                          'FORCE_DOCUMENT_READ_ACTION',
                                                                                      'FeatureTypes': ['TABLES '
                                                                                                       '| '
                                                                                                       'FORMS']}}}}

Gets the properties associated with a document classification job. Use this operation to get the status of a classification job.

See also: AWS API Documentation

Request Syntax

client.describe_document_classification_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier that Amazon Comprehend generated for the job. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'DocumentClassificationJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'DocumentClassifierArn': 'string',
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • DocumentClassificationJobProperties (dict) --

      An object that describes the properties associated with the document classification job.

      • JobId (string) --

        The identifier assigned to the document classification job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the document classification job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:document-classification-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:document-classification-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name that you assigned to the document classification job.

      • JobStatus (string) --

        The current status of the document classification job. If the status is FAILED, the Message field shows the reason for the failure.

      • Message (string) --

        A description of the status of the job.

      • SubmitTime (datetime) --

        The time that the document classification job was submitted for processing.

      • EndTime (datetime) --

        The time that the document classification job completed.

      • DocumentClassifierArn (string) --

        The Amazon Resource Name (ARN) that identifies the document classifier.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the document classification job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the document classification job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) of the AWS identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your document classification job. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

DescribeDocumentClassifier (updated) Link ¶
Changes (response)
{'DocumentClassifierProperties': {'InputDataConfig': {'AugmentedManifests': {'AnnotationDataS3Uri': 'string',
                                                                             'DocumentType': 'PLAIN_TEXT_DOCUMENT '
                                                                                             '| '
                                                                                             'SEMI_STRUCTURED_DOCUMENT',
                                                                             'SourceDocumentsS3Uri': 'string'}}}}

Gets the properties associated with a document classifier.

See also: AWS API Documentation

Request Syntax

client.describe_document_classifier(
    DocumentClassifierArn='string'
)
type DocumentClassifierArn:

string

param DocumentClassifierArn:

[REQUIRED]

The Amazon Resource Name (ARN) that identifies the document classifier. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'DocumentClassifierProperties': {
        'DocumentClassifierArn': 'string',
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'Status': 'SUBMITTED'|'TRAINING'|'DELETING'|'STOP_REQUESTED'|'STOPPED'|'IN_ERROR'|'TRAINED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'TrainingStartTime': datetime(2015, 1, 1),
        'TrainingEndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'DataFormat': 'COMPREHEND_CSV'|'AUGMENTED_MANIFEST',
            'S3Uri': 'string',
            'LabelDelimiter': 'string',
            'AugmentedManifests': [
                {
                    'S3Uri': 'string',
                    'AttributeNames': [
                        'string',
                    ],
                    'AnnotationDataS3Uri': 'string',
                    'SourceDocumentsS3Uri': 'string',
                    'DocumentType': 'PLAIN_TEXT_DOCUMENT'|'SEMI_STRUCTURED_DOCUMENT'
                },
            ]
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'ClassifierMetadata': {
            'NumberOfLabels': 123,
            'NumberOfTrainedDocuments': 123,
            'NumberOfTestDocuments': 123,
            'EvaluationMetrics': {
                'Accuracy': 123.0,
                'Precision': 123.0,
                'Recall': 123.0,
                'F1Score': 123.0,
                'MicroPrecision': 123.0,
                'MicroRecall': 123.0,
                'MicroF1Score': 123.0,
                'HammingLoss': 123.0
            }
        },
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'Mode': 'MULTI_CLASS'|'MULTI_LABEL',
        'ModelKmsKeyId': 'string'
    }
}

Response Structure

  • (dict) --

    • DocumentClassifierProperties (dict) --

      An object that contains the properties associated with a document classifier.

      • DocumentClassifierArn (string) --

        The Amazon Resource Name (ARN) that identifies the document classifier.

      • LanguageCode (string) --

        The language code for the language of the documents that the classifier was trained on.

      • Status (string) --

        The status of the document classifier. If the status is TRAINED the classifier is ready to use. If the status is FAILED you can see additional information about why the classifier wasn't trained in the Message field.

      • Message (string) --

        Additional information about the status of the classifier.

      • SubmitTime (datetime) --

        The time that the document classifier was submitted for training.

      • EndTime (datetime) --

        The time that training the document classifier completed.

      • TrainingStartTime (datetime) --

        Indicates the time when the training starts on documentation classifiers. You are billed for the time interval between this time and the value of TrainingEndTime.

      • TrainingEndTime (datetime) --

        The time that training of the document classifier was completed. Indicates the time when the training completes on documentation classifiers. You are billed for the time interval between this time and the value of TrainingStartTime.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the document classifier for training.

        • DataFormat (string) --

          The format of your training data:

          • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.

          • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels. If you use this value, you must provide the AugmentedManifests parameter in your request.

          If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The S3 bucket must be in the same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          This parameter is required if you set DataFormat to COMPREHEND_CSV.

        • LabelDelimiter (string) --

          Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it's an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.

        • AugmentedManifests (list) --

          A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

          This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

          • (dict) --

            An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

            • S3Uri (string) --

              The Amazon S3 location of the augmented manifest file.

            • AttributeNames (list) --

              The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

              If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

              If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

              • (string) --

            • AnnotationDataS3Uri (string) --

              The S3 prefix to the annotation files that are referred in the augmented manifest file.

            • SourceDocumentsS3Uri (string) --

              The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

            • DocumentType (string) --

              The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

              • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

              • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

      • OutputDataConfig (dict) --

        Provides output results configuration parameters for custom classifier jobs.

        • S3Uri (string) --

          When you use the OutputDataConfig object while creating a custom classifier, you specify the Amazon S3 location where you want to write the confusion matrix. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of this output file.

          When the custom classifier job is finished, the service creates the output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the confusion matrix.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • ClassifierMetadata (dict) --

        Information about the document classifier, including the number of documents used for training the classifier, the number of documents used for test the classifier, and an accuracy rating.

        • NumberOfLabels (integer) --

          The number of labels in the input data.

        • NumberOfTrainedDocuments (integer) --

          The number of documents in the input data that were used to train the classifier. Typically this is 80 to 90 percent of the input documents.

        • NumberOfTestDocuments (integer) --

          The number of documents in the input data that were used to test the classifier. Typically this is 10 to 20 percent of the input documents, up to 10,000 documents.

        • EvaluationMetrics (dict) --

          Describes the result metrics for the test data associated with an documentation classifier.

          • Accuracy (float) --

            The fraction of the labels that were correct recognized. It is computed by dividing the number of labels in the test documents that were correctly recognized by the total number of labels in the test documents.

          • Precision (float) --

            A measure of the usefulness of the classifier results in the test data. High precision means that the classifier returned substantially more relevant results than irrelevant ones.

          • Recall (float) --

            A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results.

          • F1Score (float) --

            A measure of how accurate the classifier results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.

          • MicroPrecision (float) --

            A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones. Unlike the Precision metric which comes from averaging the precision of all available labels, this is based on the overall score of all precision scores added together.

          • MicroRecall (float) --

            A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results. Specifically, this indicates how many of the correct categories in the text that the model can predict. It is a percentage of correct categories in the text that can found. Instead of averaging the recall scores of all labels (as with Recall), micro Recall is based on the overall score of all recall scores added together.

          • MicroF1Score (float) --

            A measure of how accurate the classifier results are for the test data. It is a combination of the Micro Precision and Micro Recall values. The Micro F1Score is the harmonic mean of the two scores. The highest score is 1, and the worst score is 0.

          • HammingLoss (float) --

            Indicates the fraction of labels that are incorrectly predicted. Also seen as the fraction of wrong labels compared to the total number of labels. Scores closer to zero are better.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your custom classifier. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

      • Mode (string) --

        Indicates the mode in which the specific classifier was trained. This also indicates the format of input documents and the format of the confusion matrix. Each classifier can only be trained in one mode and this cannot be changed once the classifier is trained.

      • ModelKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

DescribeDominantLanguageDetectionJob (updated) Link ¶
Changes (response)
{'DominantLanguageDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                               '| '
                                                                                                               'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                         'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                             '| '
                                                                                                             'FORCE_DOCUMENT_READ_ACTION',
                                                                                         'FeatureTypes': ['TABLES '
                                                                                                          '| '
                                                                                                          'FORMS']}}}}

Gets the properties associated with a dominant language detection job. Use this operation to get the status of a detection job.

See also: AWS API Documentation

Request Syntax

client.describe_dominant_language_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier that Amazon Comprehend generated for the job. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'DominantLanguageDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • DominantLanguageDetectionJobProperties (dict) --

      An object that contains the properties associated with a dominant language detection job.

      • JobId (string) --

        The identifier assigned to the dominant language detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the dominant language detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:dominant-language-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name that you assigned to the dominant language detection job.

      • JobStatus (string) --

        The current status of the dominant language detection job. If the status is FAILED, the Message field shows the reason for the failure.

      • Message (string) --

        A description for the status of a job.

      • SubmitTime (datetime) --

        The time that the dominant language detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the dominant language detection job completed.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the dominant language detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the dominant language detection job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your dominant language detection job. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

DescribeEntitiesDetectionJob (updated) Link ¶
Changes (response)
{'EntitiesDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                       '| '
                                                                                                       'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                 'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                     '| '
                                                                                                     'FORCE_DOCUMENT_READ_ACTION',
                                                                                 'FeatureTypes': ['TABLES '
                                                                                                  '| '
                                                                                                  'FORMS']}}}}

Gets the properties associated with an entities detection job. Use this operation to get the status of a detection job.

See also: AWS API Documentation

Request Syntax

client.describe_entities_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier that Amazon Comprehend generated for the job. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'EntitiesDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'EntityRecognizerArn': 'string',
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • EntitiesDetectionJobProperties (dict) --

      An object that contains the properties associated with an entities detection job.

      • JobId (string) --

        The identifier assigned to the entities detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the entities detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:entities-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name that you assigned the entities detection job.

      • JobStatus (string) --

        The current status of the entities detection job. If the status is FAILED, the Message field shows the reason for the failure.

      • Message (string) --

        A description of the status of a job.

      • SubmitTime (datetime) --

        The time that the entities detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the entities detection job completed

      • EntityRecognizerArn (string) --

        The Amazon Resource Name (ARN) that identifies the entity recognizer.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the entities detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the entities detection job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • LanguageCode (string) --

        The language code of the input documents.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your entity detection job. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

DescribeEntityRecognizer (updated) Link ¶
Changes (response)
{'EntityRecognizerProperties': {'InputDataConfig': {'AugmentedManifests': {'AnnotationDataS3Uri': 'string',
                                                                           'DocumentType': 'PLAIN_TEXT_DOCUMENT '
                                                                                           '| '
                                                                                           'SEMI_STRUCTURED_DOCUMENT',
                                                                           'SourceDocumentsS3Uri': 'string'}}}}

Provides details about an entity recognizer including status, S3 buckets containing training data, recognizer metadata, metrics, and so on.

See also: AWS API Documentation

Request Syntax

client.describe_entity_recognizer(
    EntityRecognizerArn='string'
)
type EntityRecognizerArn:

string

param EntityRecognizerArn:

[REQUIRED]

The Amazon Resource Name (ARN) that identifies the entity recognizer.

rtype:

dict

returns:

Response Syntax

{
    'EntityRecognizerProperties': {
        'EntityRecognizerArn': 'string',
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'Status': 'SUBMITTED'|'TRAINING'|'DELETING'|'STOP_REQUESTED'|'STOPPED'|'IN_ERROR'|'TRAINED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'TrainingStartTime': datetime(2015, 1, 1),
        'TrainingEndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'DataFormat': 'COMPREHEND_CSV'|'AUGMENTED_MANIFEST',
            'EntityTypes': [
                {
                    'Type': 'string'
                },
            ],
            'Documents': {
                'S3Uri': 'string'
            },
            'Annotations': {
                'S3Uri': 'string'
            },
            'EntityList': {
                'S3Uri': 'string'
            },
            'AugmentedManifests': [
                {
                    'S3Uri': 'string',
                    'AttributeNames': [
                        'string',
                    ],
                    'AnnotationDataS3Uri': 'string',
                    'SourceDocumentsS3Uri': 'string',
                    'DocumentType': 'PLAIN_TEXT_DOCUMENT'|'SEMI_STRUCTURED_DOCUMENT'
                },
            ]
        },
        'RecognizerMetadata': {
            'NumberOfTrainedDocuments': 123,
            'NumberOfTestDocuments': 123,
            'EvaluationMetrics': {
                'Precision': 123.0,
                'Recall': 123.0,
                'F1Score': 123.0
            },
            'EntityTypes': [
                {
                    'Type': 'string',
                    'EvaluationMetrics': {
                        'Precision': 123.0,
                        'Recall': 123.0,
                        'F1Score': 123.0
                    },
                    'NumberOfTrainMentions': 123
                },
            ]
        },
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        },
        'ModelKmsKeyId': 'string'
    }
}

Response Structure

  • (dict) --

    • EntityRecognizerProperties (dict) --

      Describes information associated with an entity recognizer.

      • EntityRecognizerArn (string) --

        The Amazon Resource Name (ARN) that identifies the entity recognizer.

      • LanguageCode (string) --

        The language of the input documents. All documents must be in the same language. Only English ("en") is currently supported.

      • Status (string) --

        Provides the status of the entity recognizer.

      • Message (string) --

        A description of the status of the recognizer.

      • SubmitTime (datetime) --

        The time that the recognizer was submitted for processing.

      • EndTime (datetime) --

        The time that the recognizer creation completed.

      • TrainingStartTime (datetime) --

        The time that training of the entity recognizer started.

      • TrainingEndTime (datetime) --

        The time that training of the entity recognizer was completed.

      • InputDataConfig (dict) --

        The input data properties of an entity recognizer.

        • DataFormat (string) --

          The format of your training data:

          • COMPREHEND_CSV: A CSV file that supplements your training documents. The CSV file contains information about the custom entities that your trained model will detect. The required format of the file depends on whether you are providing annotations or an entity list. If you use this value, you must provide your CSV file by using either the Annotations or EntityList parameters. You must provide your training documents by using the Documents parameter.

          • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its labels. Each label annotates a named entity in the training document. If you use this value, you must provide the AugmentedManifests parameter in your request.

          If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

        • EntityTypes (list) --

          The entity types in the labeled training data that Amazon Comprehend uses to train the custom entity recognizer. Any entity types that you don't specify are ignored.

          A maximum of 25 entity types can be used at one time to train an entity recognizer. Entity types must not contain the following invalid characters: n (line break), \n (escaped line break), r (carriage return), \r (escaped carriage return), t (tab), \t (escaped tab), space, and , (comma).

          • (dict) --

            An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.

            • Type (string) --

              An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.

              Entity types must not contain the following invalid characters: n (line break), \n (escaped line break, r (carriage return), \r (escaped carriage return), t (tab), \t (escaped tab), space, and , (comma).

        • Documents (dict) --

          The S3 location of the folder that contains the training documents for your custom entity recognizer.

          This parameter is required if you set DataFormat to COMPREHEND_CSV.

          • S3Uri (string) --

            Specifies the Amazon S3 location where the training documents for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

        • Annotations (dict) --

          The S3 location of the CSV file that annotates your training documents.

          • S3Uri (string) --

            Specifies the Amazon S3 location where the annotations for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

        • EntityList (dict) --

          The S3 location of the CSV file that has the entity list for your custom entity recognizer.

          • S3Uri (string) --

            Specifies the Amazon S3 location where the entity list is located. The URI must be in the same region as the API endpoint that you are calling.

        • AugmentedManifests (list) --

          A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

          This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

          • (dict) --

            An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

            • S3Uri (string) --

              The Amazon S3 location of the augmented manifest file.

            • AttributeNames (list) --

              The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

              If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

              If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

              • (string) --

            • AnnotationDataS3Uri (string) --

              The S3 prefix to the annotation files that are referred in the augmented manifest file.

            • SourceDocumentsS3Uri (string) --

              The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

            • DocumentType (string) --

              The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

              • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

              • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

      • RecognizerMetadata (dict) --

        Provides information about an entity recognizer.

        • NumberOfTrainedDocuments (integer) --

          The number of documents in the input data that were used to train the entity recognizer. Typically this is 80 to 90 percent of the input documents.

        • NumberOfTestDocuments (integer) --

          The number of documents in the input data that were used to test the entity recognizer. Typically this is 10 to 20 percent of the input documents.

        • EvaluationMetrics (dict) --

          Detailed information about the accuracy of an entity recognizer.

          • Precision (float) --

            A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones.

          • Recall (float) --

            A measure of how complete the recognizer results are for the test data. High recall means that the recognizer returned most of the relevant results.

          • F1Score (float) --

            A measure of how accurate the recognizer results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.

        • EntityTypes (list) --

          Entity types from the metadata of an entity recognizer.

          • (dict) --

            Individual item from the list of entity types in the metadata of an entity recognizer.

            • Type (string) --

              Type of entity from the list of entity types in the metadata of an entity recognizer.

            • EvaluationMetrics (dict) --

              Detailed information about the accuracy of the entity recognizer for a specific item on the list of entity types.

              • Precision (float) --

                A measure of the usefulness of the recognizer results for a specific entity type in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones.

              • Recall (float) --

                A measure of how complete the recognizer results are for a specific entity type in the test data. High recall means that the recognizer returned most of the relevant results.

              • F1Score (float) --

                A measure of how accurate the recognizer results are for a specific entity type in the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.

            • NumberOfTrainMentions (integer) --

              Indicates the number of times the given entity type was seen in the training data.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your custom entity recognizer. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

      • ModelKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

DescribeEventsDetectionJob (updated) Link ¶
Changes (response)
{'EventsDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                     '| '
                                                                                                     'TEXTRACT_ANALYZE_DOCUMENT',
                                                                               'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                   '| '
                                                                                                   'FORCE_DOCUMENT_READ_ACTION',
                                                                               'FeatureTypes': ['TABLES '
                                                                                                '| '
                                                                                                'FORMS']}}}}

Gets the status and details of an events detection job.

See also: AWS API Documentation

Request Syntax

client.describe_events_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier of the events detection job.

rtype:

dict

returns:

Response Syntax

{
    'EventsDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'DataAccessRoleArn': 'string',
        'TargetEventTypes': [
            'string',
        ]
    }
}

Response Structure

  • (dict) --

    • EventsDetectionJobProperties (dict) --

      An object that contains the properties associated with an event detection job.

      • JobId (string) --

        The identifier assigned to the events detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the events detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:events-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:events-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name you assigned the events detection job.

      • JobStatus (string) --

        The current status of the events detection job.

      • Message (string) --

        A description of the status of the events detection job.

      • SubmitTime (datetime) --

        The time that the events detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the events detection job completed.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the events detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the events detection job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • LanguageCode (string) --

        The language code of the input documents.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) of the AWS Identify and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

      • TargetEventTypes (list) --

        The types of events that are detected by the job.

        • (string) --

DescribeKeyPhrasesDetectionJob (updated) Link ¶
Changes (response)
{'KeyPhrasesDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                         '| '
                                                                                                         'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                   'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                       '| '
                                                                                                       'FORCE_DOCUMENT_READ_ACTION',
                                                                                   'FeatureTypes': ['TABLES '
                                                                                                    '| '
                                                                                                    'FORMS']}}}}

Gets the properties associated with a key phrases detection job. Use this operation to get the status of a detection job.

See also: AWS API Documentation

Request Syntax

client.describe_key_phrases_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier that Amazon Comprehend generated for the job. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'KeyPhrasesDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • KeyPhrasesDetectionJobProperties (dict) --

      An object that contains the properties associated with a key phrases detection job.

      • JobId (string) --

        The identifier assigned to the key phrases detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the key phrases detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:key-phrases-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name that you assigned the key phrases detection job.

      • JobStatus (string) --

        The current status of the key phrases detection job. If the status is FAILED, the Message field shows the reason for the failure.

      • Message (string) --

        A description of the status of a job.

      • SubmitTime (datetime) --

        The time that the key phrases detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the key phrases detection job completed.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the key phrases detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the key phrases detection job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • LanguageCode (string) --

        The language code of the input documents.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your key phrases detection job. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

DescribePiiEntitiesDetectionJob (updated) Link ¶
Changes (response)
{'PiiEntitiesDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                          '| '
                                                                                                          'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                    'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                        '| '
                                                                                                        'FORCE_DOCUMENT_READ_ACTION',
                                                                                    'FeatureTypes': ['TABLES '
                                                                                                     '| '
                                                                                                     'FORMS']}}}}

Gets the properties associated with a PII entities detection job. For example, you can use this operation to get the job status.

See also: AWS API Documentation

Request Syntax

client.describe_pii_entities_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier that Amazon Comprehend generated for the job. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'PiiEntitiesDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'RedactionConfig': {
            'PiiEntityTypes': [
                'BANK_ACCOUNT_NUMBER'|'BANK_ROUTING'|'CREDIT_DEBIT_NUMBER'|'CREDIT_DEBIT_CVV'|'CREDIT_DEBIT_EXPIRY'|'PIN'|'EMAIL'|'ADDRESS'|'NAME'|'PHONE'|'SSN'|'DATE_TIME'|'PASSPORT_NUMBER'|'DRIVER_ID'|'URL'|'AGE'|'USERNAME'|'PASSWORD'|'AWS_ACCESS_KEY'|'AWS_SECRET_KEY'|'IP_ADDRESS'|'MAC_ADDRESS'|'ALL',
            ],
            'MaskMode': 'MASK'|'REPLACE_WITH_PII_ENTITY_TYPE',
            'MaskCharacter': 'string'
        },
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'DataAccessRoleArn': 'string',
        'Mode': 'ONLY_REDACTION'|'ONLY_OFFSETS'
    }
}

Response Structure

  • (dict) --

    • PiiEntitiesDetectionJobProperties (dict) --

      Provides information about a PII entities detection job.

      • JobId (string) --

        The identifier assigned to the PII entities detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the PII entities detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:pii-entities-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name that you assigned the PII entities detection job.

      • JobStatus (string) --

        The current status of the PII entities detection job. If the status is FAILED, the Message field shows the reason for the failure.

      • Message (string) --

        A description of the status of a job.

      • SubmitTime (datetime) --

        The time that the PII entities detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the PII entities detection job completed.

      • InputDataConfig (dict) --

        The input properties for a PII entities detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the PII entities detection job.

        • S3Uri (string) --

          When you use the PiiOutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job.

      • RedactionConfig (dict) --

        Provides configuration parameters for PII entity redaction.

        This parameter is required if you set the Mode parameter to ONLY_REDACTION. In that case, you must provide a RedactionConfig definition that includes the PiiEntityTypes parameter.

        • PiiEntityTypes (list) --

          An array of the types of PII entities that Amazon Comprehend detects in the input text for your request.

          • (string) --

        • MaskMode (string) --

          Specifies whether the PII entity is redacted with the mask character or the entity type.

        • MaskCharacter (string) --

          A character that replaces each character in the redacted PII entity.

      • LanguageCode (string) --

        The language code of the input documents

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

      • Mode (string) --

        Specifies whether the output provides the locations (offsets) of PII entities or a file in which PII entities are redacted.

DescribeSentimentDetectionJob (updated) Link ¶
Changes (response)
{'SentimentDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                        '| '
                                                                                                        'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                  'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                      '| '
                                                                                                      'FORCE_DOCUMENT_READ_ACTION',
                                                                                  'FeatureTypes': ['TABLES '
                                                                                                   '| '
                                                                                                   'FORMS']}}}}

Gets the properties associated with a sentiment detection job. Use this operation to get the status of a detection job.

See also: AWS API Documentation

Request Syntax

client.describe_sentiment_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier that Amazon Comprehend generated for the job. The operation returns this identifier in its response.

rtype:

dict

returns:

Response Syntax

{
    'SentimentDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • SentimentDetectionJobProperties (dict) --

      An object that contains the properties associated with a sentiment detection job.

      • JobId (string) --

        The identifier assigned to the sentiment detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the sentiment detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:sentiment-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name that you assigned to the sentiment detection job

      • JobStatus (string) --

        The current status of the sentiment detection job. If the status is FAILED, the Messages field shows the reason for the failure.

      • Message (string) --

        A description of the status of a job.

      • SubmitTime (datetime) --

        The time that the sentiment detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the sentiment detection job ended.

      • InputDataConfig (dict) --

        The input data configuration that you supplied when you created the sentiment detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration that you supplied when you created the sentiment detection job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • LanguageCode (string) --

        The language code of the input documents.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your sentiment detection job. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

DescribeTopicsDetectionJob (updated) Link ¶
Changes (response)
{'TopicsDetectionJobProperties': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                     '| '
                                                                                                     'TEXTRACT_ANALYZE_DOCUMENT',
                                                                               'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                   '| '
                                                                                                   'FORCE_DOCUMENT_READ_ACTION',
                                                                               'FeatureTypes': ['TABLES '
                                                                                                '| '
                                                                                                'FORMS']}}}}

Gets the properties associated with a topic detection job. Use this operation to get the status of a detection job.

See also: AWS API Documentation

Request Syntax

client.describe_topics_detection_job(
    JobId='string'
)
type JobId:

string

param JobId:

[REQUIRED]

The identifier assigned by the user to the detection job.

rtype:

dict

returns:

Response Syntax

{
    'TopicsDetectionJobProperties': {
        'JobId': 'string',
        'JobArn': 'string',
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'Message': 'string',
        'SubmitTime': datetime(2015, 1, 1),
        'EndTime': datetime(2015, 1, 1),
        'InputDataConfig': {
            'S3Uri': 'string',
            'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
            'DocumentReaderConfig': {
                'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                'FeatureTypes': [
                    'TABLES'|'FORMS',
                ]
            }
        },
        'OutputDataConfig': {
            'S3Uri': 'string',
            'KmsKeyId': 'string'
        },
        'NumberOfTopics': 123,
        'DataAccessRoleArn': 'string',
        'VolumeKmsKeyId': 'string',
        'VpcConfig': {
            'SecurityGroupIds': [
                'string',
            ],
            'Subnets': [
                'string',
            ]
        }
    }
}

Response Structure

  • (dict) --

    • TopicsDetectionJobProperties (dict) --

      The list of properties for the requested job.

      • JobId (string) --

        The identifier assigned to the topic detection job.

      • JobArn (string) --

        The Amazon Resource Name (ARN) of the topics detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

        arn:<partition>:comprehend:<region>:<account-id>:topics-detection-job/<job-id>

        The following is an example job ARN:

        arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/1234abcd12ab34cd56ef1234567890ab

      • JobName (string) --

        The name of the topic detection job.

      • JobStatus (string) --

        The current status of the topic detection job. If the status is Failed, the reason for the failure is shown in the Message field.

      • Message (string) --

        A description for the status of a job.

      • SubmitTime (datetime) --

        The time that the topic detection job was submitted for processing.

      • EndTime (datetime) --

        The time that the topic detection job was completed.

      • InputDataConfig (dict) --

        The input data configuration supplied when you created the topic detection job.

        • S3Uri (string) --

          The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

          For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

        • InputFormat (string) --

          Specifies how the text in an input file should be processed:

          • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

          • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

        • DocumentReaderConfig (dict) --

          The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

          Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

          • DocumentReadAction (string) --

            This enum field will start with two values which will apply to PDFs:

            • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

            • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

          • DocumentReadMode (string) --

            This enum field provides two values:

            • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

            • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

          • FeatureTypes (list) --

            Specifies how the text in an input file should be processed:

            • (string) --

              A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

              • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

              • FORMS - Add FORMS to return detected form data.

      • OutputDataConfig (dict) --

        The output data configuration supplied when you created the topic detection job.

        • S3Uri (string) --

          When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

          When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

        • KmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

          • KMS Key Alias: "alias/ExampleAlias"

          • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

      • NumberOfTopics (integer) --

        The number of topics to detect supplied when you created the topic detection job. The default is 10.

      • DataAccessRoleArn (string) --

        The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your job data.

      • VolumeKmsKeyId (string) --

        ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

        • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

        • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

      • VpcConfig (dict) --

        Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your topic detection job. For more information, see Amazon VPC.

        • SecurityGroupIds (list) --

          The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

          • (string) --

        • Subnets (list) --

          The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

          • (string) --

ListDocumentClassificationJobs (updated) Link ¶
Changes (response)
{'DocumentClassificationJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                                '| '
                                                                                                                'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                          'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                              '| '
                                                                                                              'FORCE_DOCUMENT_READ_ACTION',
                                                                                          'FeatureTypes': ['TABLES '
                                                                                                           '| '
                                                                                                           'FORMS']}}}}

Gets a list of the documentation classification jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_document_classification_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their names, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the job.

  • JobStatus (string) --

    Filters the list based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'DocumentClassificationJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'DocumentClassifierArn': 'string',
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DocumentClassificationJobPropertiesList (list) --

      A list containing the properties of each job returned.

      • (dict) --

        Provides information about a document classification job.

        • JobId (string) --

          The identifier assigned to the document classification job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the document classification job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:document-classification-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:document-classification-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name that you assigned to the document classification job.

        • JobStatus (string) --

          The current status of the document classification job. If the status is FAILED, the Message field shows the reason for the failure.

        • Message (string) --

          A description of the status of the job.

        • SubmitTime (datetime) --

          The time that the document classification job was submitted for processing.

        • EndTime (datetime) --

          The time that the document classification job completed.

        • DocumentClassifierArn (string) --

          The Amazon Resource Name (ARN) that identifies the document classifier.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the document classification job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the document classification job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) of the AWS identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your document classification job. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

ListDocumentClassifiers (updated) Link ¶
Changes (response)
{'DocumentClassifierPropertiesList': {'InputDataConfig': {'AugmentedManifests': {'AnnotationDataS3Uri': 'string',
                                                                                 'DocumentType': 'PLAIN_TEXT_DOCUMENT '
                                                                                                 '| '
                                                                                                 'SEMI_STRUCTURED_DOCUMENT',
                                                                                 'SourceDocumentsS3Uri': 'string'}}}}

Gets a list of the document classifiers that you have created.

See also: AWS API Documentation

Request Syntax

client.list_document_classifiers(
    Filter={
        'Status': 'SUBMITTED'|'TRAINING'|'DELETING'|'STOP_REQUESTED'|'STOPPED'|'IN_ERROR'|'TRAINED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • Status (string) --

    Filters the list of classifiers based on status.

  • SubmitTimeBefore (datetime) --

    Filters the list of classifiers based on the time that the classifier was submitted for processing. Returns only classifiers submitted before the specified time. Classifiers are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of classifiers based on the time that the classifier was submitted for processing. Returns only classifiers submitted after the specified time. Classifiers are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'DocumentClassifierPropertiesList': [
        {
            'DocumentClassifierArn': 'string',
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'Status': 'SUBMITTED'|'TRAINING'|'DELETING'|'STOP_REQUESTED'|'STOPPED'|'IN_ERROR'|'TRAINED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'TrainingStartTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'DataFormat': 'COMPREHEND_CSV'|'AUGMENTED_MANIFEST',
                'S3Uri': 'string',
                'LabelDelimiter': 'string',
                'AugmentedManifests': [
                    {
                        'S3Uri': 'string',
                        'AttributeNames': [
                            'string',
                        ],
                        'AnnotationDataS3Uri': 'string',
                        'SourceDocumentsS3Uri': 'string',
                        'DocumentType': 'PLAIN_TEXT_DOCUMENT'|'SEMI_STRUCTURED_DOCUMENT'
                    },
                ]
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'ClassifierMetadata': {
                'NumberOfLabels': 123,
                'NumberOfTrainedDocuments': 123,
                'NumberOfTestDocuments': 123,
                'EvaluationMetrics': {
                    'Accuracy': 123.0,
                    'Precision': 123.0,
                    'Recall': 123.0,
                    'F1Score': 123.0,
                    'MicroPrecision': 123.0,
                    'MicroRecall': 123.0,
                    'MicroF1Score': 123.0,
                    'HammingLoss': 123.0
                }
            },
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            },
            'Mode': 'MULTI_CLASS'|'MULTI_LABEL',
            'ModelKmsKeyId': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DocumentClassifierPropertiesList (list) --

      A list containing the properties of each job returned.

      • (dict) --

        Provides information about a document classifier.

        • DocumentClassifierArn (string) --

          The Amazon Resource Name (ARN) that identifies the document classifier.

        • LanguageCode (string) --

          The language code for the language of the documents that the classifier was trained on.

        • Status (string) --

          The status of the document classifier. If the status is TRAINED the classifier is ready to use. If the status is FAILED you can see additional information about why the classifier wasn't trained in the Message field.

        • Message (string) --

          Additional information about the status of the classifier.

        • SubmitTime (datetime) --

          The time that the document classifier was submitted for training.

        • EndTime (datetime) --

          The time that training the document classifier completed.

        • TrainingStartTime (datetime) --

          Indicates the time when the training starts on documentation classifiers. You are billed for the time interval between this time and the value of TrainingEndTime.

        • TrainingEndTime (datetime) --

          The time that training of the document classifier was completed. Indicates the time when the training completes on documentation classifiers. You are billed for the time interval between this time and the value of TrainingStartTime.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the document classifier for training.

          • DataFormat (string) --

            The format of your training data:

            • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.

            • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels. If you use this value, you must provide the AugmentedManifests parameter in your request.

            If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The S3 bucket must be in the same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

            This parameter is required if you set DataFormat to COMPREHEND_CSV.

          • LabelDelimiter (string) --

            Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it's an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.

          • AugmentedManifests (list) --

            A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

            This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

            • (dict) --

              An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

              • S3Uri (string) --

                The Amazon S3 location of the augmented manifest file.

              • AttributeNames (list) --

                The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

                If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

                If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

                • (string) --

              • AnnotationDataS3Uri (string) --

                The S3 prefix to the annotation files that are referred in the augmented manifest file.

              • SourceDocumentsS3Uri (string) --

                The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

              • DocumentType (string) --

                The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

                • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

                • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

        • OutputDataConfig (dict) --

          Provides output results configuration parameters for custom classifier jobs.

          • S3Uri (string) --

            When you use the OutputDataConfig object while creating a custom classifier, you specify the Amazon S3 location where you want to write the confusion matrix. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of this output file.

            When the custom classifier job is finished, the service creates the output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the confusion matrix.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • ClassifierMetadata (dict) --

          Information about the document classifier, including the number of documents used for training the classifier, the number of documents used for test the classifier, and an accuracy rating.

          • NumberOfLabels (integer) --

            The number of labels in the input data.

          • NumberOfTrainedDocuments (integer) --

            The number of documents in the input data that were used to train the classifier. Typically this is 80 to 90 percent of the input documents.

          • NumberOfTestDocuments (integer) --

            The number of documents in the input data that were used to test the classifier. Typically this is 10 to 20 percent of the input documents, up to 10,000 documents.

          • EvaluationMetrics (dict) --

            Describes the result metrics for the test data associated with an documentation classifier.

            • Accuracy (float) --

              The fraction of the labels that were correct recognized. It is computed by dividing the number of labels in the test documents that were correctly recognized by the total number of labels in the test documents.

            • Precision (float) --

              A measure of the usefulness of the classifier results in the test data. High precision means that the classifier returned substantially more relevant results than irrelevant ones.

            • Recall (float) --

              A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results.

            • F1Score (float) --

              A measure of how accurate the classifier results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.

            • MicroPrecision (float) --

              A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones. Unlike the Precision metric which comes from averaging the precision of all available labels, this is based on the overall score of all precision scores added together.

            • MicroRecall (float) --

              A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results. Specifically, this indicates how many of the correct categories in the text that the model can predict. It is a percentage of correct categories in the text that can found. Instead of averaging the recall scores of all labels (as with Recall), micro Recall is based on the overall score of all recall scores added together.

            • MicroF1Score (float) --

              A measure of how accurate the classifier results are for the test data. It is a combination of the Micro Precision and Micro Recall values. The Micro F1Score is the harmonic mean of the two scores. The highest score is 1, and the worst score is 0.

            • HammingLoss (float) --

              Indicates the fraction of labels that are incorrectly predicted. Also seen as the fraction of wrong labels compared to the total number of labels. Scores closer to zero are better.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your custom classifier. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

        • Mode (string) --

          Indicates the mode in which the specific classifier was trained. This also indicates the format of input documents and the format of the confusion matrix. Each classifier can only be trained in one mode and this cannot be changed once the classifier is trained.

        • ModelKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • NextToken (string) --

      Identifies the next page of results to return.

ListDominantLanguageDetectionJobs (updated) Link ¶
Changes (response)
{'DominantLanguageDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                                   '| '
                                                                                                                   'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                             'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                                 '| '
                                                                                                                 'FORCE_DOCUMENT_READ_ACTION',
                                                                                             'FeatureTypes': ['TABLES '
                                                                                                              '| '
                                                                                                              'FORMS']}}}}

Gets a list of the dominant language detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_dominant_language_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters that jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the job.

  • JobStatus (string) --

    Filters the list of jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'DominantLanguageDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • DominantLanguageDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about a dominant language detection job.

        • JobId (string) --

          The identifier assigned to the dominant language detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the dominant language detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:dominant-language-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name that you assigned to the dominant language detection job.

        • JobStatus (string) --

          The current status of the dominant language detection job. If the status is FAILED, the Message field shows the reason for the failure.

        • Message (string) --

          A description for the status of a job.

        • SubmitTime (datetime) --

          The time that the dominant language detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the dominant language detection job completed.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the dominant language detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the dominant language detection job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your dominant language detection job. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

ListEntitiesDetectionJobs (updated) Link ¶
Changes (response)
{'EntitiesDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                           '| '
                                                                                                           'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                     'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                         '| '
                                                                                                         'FORCE_DOCUMENT_READ_ACTION',
                                                                                     'FeatureTypes': ['TABLES '
                                                                                                      '| '
                                                                                                      'FORMS']}}}}

Gets a list of the entity detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_entities_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the job.

  • JobStatus (string) --

    Filters the list of jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'EntitiesDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'EntityRecognizerArn': 'string',
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • EntitiesDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about an entities detection job.

        • JobId (string) --

          The identifier assigned to the entities detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the entities detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:entities-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name that you assigned the entities detection job.

        • JobStatus (string) --

          The current status of the entities detection job. If the status is FAILED, the Message field shows the reason for the failure.

        • Message (string) --

          A description of the status of a job.

        • SubmitTime (datetime) --

          The time that the entities detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the entities detection job completed

        • EntityRecognizerArn (string) --

          The Amazon Resource Name (ARN) that identifies the entity recognizer.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the entities detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the entities detection job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • LanguageCode (string) --

          The language code of the input documents.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your entity detection job. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

ListEntityRecognizers (updated) Link ¶
Changes (response)
{'EntityRecognizerPropertiesList': {'InputDataConfig': {'AugmentedManifests': {'AnnotationDataS3Uri': 'string',
                                                                               'DocumentType': 'PLAIN_TEXT_DOCUMENT '
                                                                                               '| '
                                                                                               'SEMI_STRUCTURED_DOCUMENT',
                                                                               'SourceDocumentsS3Uri': 'string'}}}}

Gets a list of the properties of all entity recognizers that you created, including recognizers currently in training. Allows you to filter the list of recognizers based on criteria such as status and submission time. This call returns up to 500 entity recognizers in the list, with a default number of 100 recognizers in the list.

The results of this list are not in any particular order. Please get the list and sort locally if needed.

See also: AWS API Documentation

Request Syntax

client.list_entity_recognizers(
    Filter={
        'Status': 'SUBMITTED'|'TRAINING'|'DELETING'|'STOP_REQUESTED'|'STOPPED'|'IN_ERROR'|'TRAINED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the list of entities returned. You can filter on Status, SubmitTimeBefore, or SubmitTimeAfter. You can only set one filter at a time.

  • Status (string) --

    The status of an entity recognizer.

  • SubmitTimeBefore (datetime) --

    Filters the list of entities based on the time that the list was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in descending order, newest to oldest.

  • SubmitTimeAfter (datetime) --

    Filters the list of entities based on the time that the list was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in ascending order, oldest to newest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return on each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'EntityRecognizerPropertiesList': [
        {
            'EntityRecognizerArn': 'string',
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'Status': 'SUBMITTED'|'TRAINING'|'DELETING'|'STOP_REQUESTED'|'STOPPED'|'IN_ERROR'|'TRAINED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'TrainingStartTime': datetime(2015, 1, 1),
            'TrainingEndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'DataFormat': 'COMPREHEND_CSV'|'AUGMENTED_MANIFEST',
                'EntityTypes': [
                    {
                        'Type': 'string'
                    },
                ],
                'Documents': {
                    'S3Uri': 'string'
                },
                'Annotations': {
                    'S3Uri': 'string'
                },
                'EntityList': {
                    'S3Uri': 'string'
                },
                'AugmentedManifests': [
                    {
                        'S3Uri': 'string',
                        'AttributeNames': [
                            'string',
                        ],
                        'AnnotationDataS3Uri': 'string',
                        'SourceDocumentsS3Uri': 'string',
                        'DocumentType': 'PLAIN_TEXT_DOCUMENT'|'SEMI_STRUCTURED_DOCUMENT'
                    },
                ]
            },
            'RecognizerMetadata': {
                'NumberOfTrainedDocuments': 123,
                'NumberOfTestDocuments': 123,
                'EvaluationMetrics': {
                    'Precision': 123.0,
                    'Recall': 123.0,
                    'F1Score': 123.0
                },
                'EntityTypes': [
                    {
                        'Type': 'string',
                        'EvaluationMetrics': {
                            'Precision': 123.0,
                            'Recall': 123.0,
                            'F1Score': 123.0
                        },
                        'NumberOfTrainMentions': 123
                    },
                ]
            },
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            },
            'ModelKmsKeyId': 'string'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • EntityRecognizerPropertiesList (list) --

      The list of properties of an entity recognizer.

      • (dict) --

        Describes information about an entity recognizer.

        • EntityRecognizerArn (string) --

          The Amazon Resource Name (ARN) that identifies the entity recognizer.

        • LanguageCode (string) --

          The language of the input documents. All documents must be in the same language. Only English ("en") is currently supported.

        • Status (string) --

          Provides the status of the entity recognizer.

        • Message (string) --

          A description of the status of the recognizer.

        • SubmitTime (datetime) --

          The time that the recognizer was submitted for processing.

        • EndTime (datetime) --

          The time that the recognizer creation completed.

        • TrainingStartTime (datetime) --

          The time that training of the entity recognizer started.

        • TrainingEndTime (datetime) --

          The time that training of the entity recognizer was completed.

        • InputDataConfig (dict) --

          The input data properties of an entity recognizer.

          • DataFormat (string) --

            The format of your training data:

            • COMPREHEND_CSV: A CSV file that supplements your training documents. The CSV file contains information about the custom entities that your trained model will detect. The required format of the file depends on whether you are providing annotations or an entity list. If you use this value, you must provide your CSV file by using either the Annotations or EntityList parameters. You must provide your training documents by using the Documents parameter.

            • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its labels. Each label annotates a named entity in the training document. If you use this value, you must provide the AugmentedManifests parameter in your request.

            If you don't specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.

          • EntityTypes (list) --

            The entity types in the labeled training data that Amazon Comprehend uses to train the custom entity recognizer. Any entity types that you don't specify are ignored.

            A maximum of 25 entity types can be used at one time to train an entity recognizer. Entity types must not contain the following invalid characters: n (line break), \n (escaped line break), r (carriage return), \r (escaped carriage return), t (tab), \t (escaped tab), space, and , (comma).

            • (dict) --

              An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.

              • Type (string) --

                An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.

                Entity types must not contain the following invalid characters: n (line break), \n (escaped line break, r (carriage return), \r (escaped carriage return), t (tab), \t (escaped tab), space, and , (comma).

          • Documents (dict) --

            The S3 location of the folder that contains the training documents for your custom entity recognizer.

            This parameter is required if you set DataFormat to COMPREHEND_CSV.

            • S3Uri (string) --

              Specifies the Amazon S3 location where the training documents for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

          • Annotations (dict) --

            The S3 location of the CSV file that annotates your training documents.

            • S3Uri (string) --

              Specifies the Amazon S3 location where the annotations for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

          • EntityList (dict) --

            The S3 location of the CSV file that has the entity list for your custom entity recognizer.

            • S3Uri (string) --

              Specifies the Amazon S3 location where the entity list is located. The URI must be in the same region as the API endpoint that you are calling.

          • AugmentedManifests (list) --

            A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

            This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.

            • (dict) --

              An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

              • S3Uri (string) --

                The Amazon S3 location of the augmented manifest file.

              • AttributeNames (list) --

                The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

                If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

                If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

                • (string) --

              • AnnotationDataS3Uri (string) --

                The S3 prefix to the annotation files that are referred in the augmented manifest file.

              • SourceDocumentsS3Uri (string) --

                The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

              • DocumentType (string) --

                The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

                • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

                • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

        • RecognizerMetadata (dict) --

          Provides information about an entity recognizer.

          • NumberOfTrainedDocuments (integer) --

            The number of documents in the input data that were used to train the entity recognizer. Typically this is 80 to 90 percent of the input documents.

          • NumberOfTestDocuments (integer) --

            The number of documents in the input data that were used to test the entity recognizer. Typically this is 10 to 20 percent of the input documents.

          • EvaluationMetrics (dict) --

            Detailed information about the accuracy of an entity recognizer.

            • Precision (float) --

              A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones.

            • Recall (float) --

              A measure of how complete the recognizer results are for the test data. High recall means that the recognizer returned most of the relevant results.

            • F1Score (float) --

              A measure of how accurate the recognizer results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.

          • EntityTypes (list) --

            Entity types from the metadata of an entity recognizer.

            • (dict) --

              Individual item from the list of entity types in the metadata of an entity recognizer.

              • Type (string) --

                Type of entity from the list of entity types in the metadata of an entity recognizer.

              • EvaluationMetrics (dict) --

                Detailed information about the accuracy of the entity recognizer for a specific item on the list of entity types.

                • Precision (float) --

                  A measure of the usefulness of the recognizer results for a specific entity type in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones.

                • Recall (float) --

                  A measure of how complete the recognizer results are for a specific entity type in the test data. High recall means that the recognizer returned most of the relevant results.

                • F1Score (float) --

                  A measure of how accurate the recognizer results are for a specific entity type in the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.

              • NumberOfTrainMentions (integer) --

                Indicates the number of times the given entity type was seen in the training data.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your custom entity recognizer. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

        • ModelKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • NextToken (string) --

      Identifies the next page of results to return.

ListEventsDetectionJobs (updated) Link ¶
Changes (response)
{'EventsDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                         '| '
                                                                                                         'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                   'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                       '| '
                                                                                                       'FORCE_DOCUMENT_READ_ACTION',
                                                                                   'FeatureTypes': ['TABLES '
                                                                                                    '| '
                                                                                                    'FORMS']}}}}

Gets a list of the events detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_events_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the events detection job.

  • JobStatus (string) --

    Filters the list of jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page.

rtype:

dict

returns:

Response Syntax

{
    'EventsDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'DataAccessRoleArn': 'string',
            'TargetEventTypes': [
                'string',
            ]
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • EventsDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about an events detection job.

        • JobId (string) --

          The identifier assigned to the events detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the events detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:events-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:events-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name you assigned the events detection job.

        • JobStatus (string) --

          The current status of the events detection job.

        • Message (string) --

          A description of the status of the events detection job.

        • SubmitTime (datetime) --

          The time that the events detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the events detection job completed.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the events detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the events detection job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • LanguageCode (string) --

          The language code of the input documents.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) of the AWS Identify and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

        • TargetEventTypes (list) --

          The types of events that are detected by the job.

          • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

ListKeyPhrasesDetectionJobs (updated) Link ¶
Changes (response)
{'KeyPhrasesDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                             '| '
                                                                                                             'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                       'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                           '| '
                                                                                                           'FORCE_DOCUMENT_READ_ACTION',
                                                                                       'FeatureTypes': ['TABLES '
                                                                                                        '| '
                                                                                                        'FORMS']}}}}

Get a list of key phrase detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_key_phrases_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the job.

  • JobStatus (string) --

    Filters the list of jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'KeyPhrasesDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • KeyPhrasesDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about a key phrases detection job.

        • JobId (string) --

          The identifier assigned to the key phrases detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the key phrases detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:key-phrases-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name that you assigned the key phrases detection job.

        • JobStatus (string) --

          The current status of the key phrases detection job. If the status is FAILED, the Message field shows the reason for the failure.

        • Message (string) --

          A description of the status of a job.

        • SubmitTime (datetime) --

          The time that the key phrases detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the key phrases detection job completed.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the key phrases detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the key phrases detection job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • LanguageCode (string) --

          The language code of the input documents.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your key phrases detection job. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

ListPiiEntitiesDetectionJobs (updated) Link ¶
Changes (response)
{'PiiEntitiesDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                              '| '
                                                                                                              'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                        'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                            '| '
                                                                                                            'FORCE_DOCUMENT_READ_ACTION',
                                                                                        'FeatureTypes': ['TABLES '
                                                                                                         '| '
                                                                                                         'FORMS']}}}}

Gets a list of the PII entity detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_pii_entities_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the job.

  • JobStatus (string) --

    Filters the list of jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page.

rtype:

dict

returns:

Response Syntax

{
    'PiiEntitiesDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'RedactionConfig': {
                'PiiEntityTypes': [
                    'BANK_ACCOUNT_NUMBER'|'BANK_ROUTING'|'CREDIT_DEBIT_NUMBER'|'CREDIT_DEBIT_CVV'|'CREDIT_DEBIT_EXPIRY'|'PIN'|'EMAIL'|'ADDRESS'|'NAME'|'PHONE'|'SSN'|'DATE_TIME'|'PASSPORT_NUMBER'|'DRIVER_ID'|'URL'|'AGE'|'USERNAME'|'PASSWORD'|'AWS_ACCESS_KEY'|'AWS_SECRET_KEY'|'IP_ADDRESS'|'MAC_ADDRESS'|'ALL',
                ],
                'MaskMode': 'MASK'|'REPLACE_WITH_PII_ENTITY_TYPE',
                'MaskCharacter': 'string'
            },
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'DataAccessRoleArn': 'string',
            'Mode': 'ONLY_REDACTION'|'ONLY_OFFSETS'
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • PiiEntitiesDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about a PII entities detection job.

        • JobId (string) --

          The identifier assigned to the PII entities detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the PII entities detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:pii-entities-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name that you assigned the PII entities detection job.

        • JobStatus (string) --

          The current status of the PII entities detection job. If the status is FAILED, the Message field shows the reason for the failure.

        • Message (string) --

          A description of the status of a job.

        • SubmitTime (datetime) --

          The time that the PII entities detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the PII entities detection job completed.

        • InputDataConfig (dict) --

          The input properties for a PII entities detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the PII entities detection job.

          • S3Uri (string) --

            When you use the PiiOutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job.

        • RedactionConfig (dict) --

          Provides configuration parameters for PII entity redaction.

          This parameter is required if you set the Mode parameter to ONLY_REDACTION. In that case, you must provide a RedactionConfig definition that includes the PiiEntityTypes parameter.

          • PiiEntityTypes (list) --

            An array of the types of PII entities that Amazon Comprehend detects in the input text for your request.

            • (string) --

          • MaskMode (string) --

            Specifies whether the PII entity is redacted with the mask character or the entity type.

          • MaskCharacter (string) --

            A character that replaces each character in the redacted PII entity.

        • LanguageCode (string) --

          The language code of the input documents

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

        • Mode (string) --

          Specifies whether the output provides the locations (offsets) of PII entities or a file in which PII entities are redacted.

    • NextToken (string) --

      Identifies the next page of results to return.

ListSentimentDetectionJobs (updated) Link ¶
Changes (response)
{'SentimentDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                            '| '
                                                                                                            'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                      'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                          '| '
                                                                                                          'FORCE_DOCUMENT_READ_ACTION',
                                                                                      'FeatureTypes': ['TABLES '
                                                                                                       '| '
                                                                                                       'FORMS']}}}}

Gets a list of sentiment detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_sentiment_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. You can filter jobs on their name, status, or the date and time that they were submitted. You can only set one filter at a time.

  • JobName (string) --

    Filters on the name of the job.

  • JobStatus (string) --

    Filters the list of jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted before the specified time. Jobs are returned in ascending order, oldest to newest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Returns only jobs submitted after the specified time. Jobs are returned in descending order, newest to oldest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'SentimentDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'LanguageCode': 'en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • SentimentDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about a sentiment detection job.

        • JobId (string) --

          The identifier assigned to the sentiment detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the sentiment detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:sentiment-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name that you assigned to the sentiment detection job

        • JobStatus (string) --

          The current status of the sentiment detection job. If the status is FAILED, the Messages field shows the reason for the failure.

        • Message (string) --

          A description of the status of a job.

        • SubmitTime (datetime) --

          The time that the sentiment detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the sentiment detection job ended.

        • InputDataConfig (dict) --

          The input data configuration that you supplied when you created the sentiment detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration that you supplied when you created the sentiment detection job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • LanguageCode (string) --

          The language code of the input documents.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) that gives Amazon Comprehend read access to your input data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your sentiment detection job. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

ListTopicsDetectionJobs (updated) Link ¶
Changes (response)
{'TopicsDetectionJobPropertiesList': {'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                                                         '| '
                                                                                                         'TEXTRACT_ANALYZE_DOCUMENT',
                                                                                   'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                                                       '| '
                                                                                                       'FORCE_DOCUMENT_READ_ACTION',
                                                                                   'FeatureTypes': ['TABLES '
                                                                                                    '| '
                                                                                                    'FORMS']}}}}

Gets a list of the topic detection jobs that you have submitted.

See also: AWS API Documentation

Request Syntax

client.list_topics_detection_jobs(
    Filter={
        'JobName': 'string',
        'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
        'SubmitTimeBefore': datetime(2015, 1, 1),
        'SubmitTimeAfter': datetime(2015, 1, 1)
    },
    NextToken='string',
    MaxResults=123
)
type Filter:

dict

param Filter:

Filters the jobs that are returned. Jobs can be filtered on their name, status, or the date and time that they were submitted. You can set only one filter at a time.

  • JobName (string) --

  • JobStatus (string) --

    Filters the list of topic detection jobs based on job status. Returns only jobs with the specified status.

  • SubmitTimeBefore (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Only returns jobs submitted before the specified time. Jobs are returned in descending order, newest to oldest.

  • SubmitTimeAfter (datetime) --

    Filters the list of jobs based on the time that the job was submitted for processing. Only returns jobs submitted after the specified time. Jobs are returned in ascending order, oldest to newest.

type NextToken:

string

param NextToken:

Identifies the next page of results to return.

type MaxResults:

integer

param MaxResults:

The maximum number of results to return in each page. The default is 100.

rtype:

dict

returns:

Response Syntax

{
    'TopicsDetectionJobPropertiesList': [
        {
            'JobId': 'string',
            'JobArn': 'string',
            'JobName': 'string',
            'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED',
            'Message': 'string',
            'SubmitTime': datetime(2015, 1, 1),
            'EndTime': datetime(2015, 1, 1),
            'InputDataConfig': {
                'S3Uri': 'string',
                'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
                'DocumentReaderConfig': {
                    'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
                    'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
                    'FeatureTypes': [
                        'TABLES'|'FORMS',
                    ]
                }
            },
            'OutputDataConfig': {
                'S3Uri': 'string',
                'KmsKeyId': 'string'
            },
            'NumberOfTopics': 123,
            'DataAccessRoleArn': 'string',
            'VolumeKmsKeyId': 'string',
            'VpcConfig': {
                'SecurityGroupIds': [
                    'string',
                ],
                'Subnets': [
                    'string',
                ]
            }
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • TopicsDetectionJobPropertiesList (list) --

      A list containing the properties of each job that is returned.

      • (dict) --

        Provides information about a topic detection job.

        • JobId (string) --

          The identifier assigned to the topic detection job.

        • JobArn (string) --

          The Amazon Resource Name (ARN) of the topics detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

          arn:<partition>:comprehend:<region>:<account-id>:topics-detection-job/<job-id>

          The following is an example job ARN:

          arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/1234abcd12ab34cd56ef1234567890ab

        • JobName (string) --

          The name of the topic detection job.

        • JobStatus (string) --

          The current status of the topic detection job. If the status is Failed, the reason for the failure is shown in the Message field.

        • Message (string) --

          A description for the status of a job.

        • SubmitTime (datetime) --

          The time that the topic detection job was submitted for processing.

        • EndTime (datetime) --

          The time that the topic detection job was completed.

        • InputDataConfig (dict) --

          The input data configuration supplied when you created the topic detection job.

          • S3Uri (string) --

            The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

            For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

          • InputFormat (string) --

            Specifies how the text in an input file should be processed:

            • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

            • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

          • DocumentReaderConfig (dict) --

            The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

            Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

            • DocumentReadAction (string) --

              This enum field will start with two values which will apply to PDFs:

              • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

              • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

            • DocumentReadMode (string) --

              This enum field provides two values:

              • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

              • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

            • FeatureTypes (list) --

              Specifies how the text in an input file should be processed:

              • (string) --

                A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

                • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

                • FORMS - Add FORMS to return detected form data.

        • OutputDataConfig (dict) --

          The output data configuration supplied when you created the topic detection job.

          • S3Uri (string) --

            When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

            When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

          • KmsKeyId (string) --

            ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

            • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

            • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

            • KMS Key Alias: "alias/ExampleAlias"

            • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

        • NumberOfTopics (integer) --

          The number of topics to detect supplied when you created the topic detection job. The default is 10.

        • DataAccessRoleArn (string) --

          The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your job data.

        • VolumeKmsKeyId (string) --

          ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

          • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

          • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

        • VpcConfig (dict) --

          Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your topic detection job. For more information, see Amazon VPC.

          • SecurityGroupIds (list) --

            The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

            • (string) --

          • Subnets (list) --

            The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

            • (string) --

    • NextToken (string) --

      Identifies the next page of results to return.

StartDocumentClassificationJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous document classification job. Use the operation to track the progress of the job.

See also: AWS API Documentation

Request Syntax

client.start_document_classification_job(
    JobName='string',
    DocumentClassifierArn='string',
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    ClientRequestToken='string',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type JobName:

string

param JobName:

The identifier of the job.

type DocumentClassifierArn:

string

param DocumentClassifierArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the document classifier to use to process the job.

type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you do not set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your document classification job. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Tags:

list

param Tags:

Tags to be associated with the document classification job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job. To get the status of the job, use this identifier with the operation.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the document classification job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:document-classification-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:document-classification-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job:

      • SUBMITTED - The job has been received and queued for processing.

      • IN_PROGRESS - Amazon Comprehend is processing the job.

      • COMPLETED - The job was successfully completed and the output is available.

      • FAILED - The job did not complete. For details, use the operation.

      • STOP_REQUESTED - Amazon Comprehend has received a stop request for the job and is processing the request.

      • STOPPED - The job was successfully stopped without completing.

StartDominantLanguageDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous dominant language detection job for a collection of documents. Use the operation to track the status of a job.

See also: AWS API Documentation

Request Syntax

client.start_dominant_language_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    ClientRequestToken='string',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data. For more information, see https://docs.aws.amazon.com/comprehend/latest/dg/access-control-managing-permissions.html#auth-role-permissions.

type JobName:

string

param JobName:

An identifier for the job.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you do not set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your dominant language detection job. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Tags:

list

param Tags:

Tags to be associated with the dominant language detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job. To get the status of a job, use this identifier with the operation.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the dominant language detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:dominant-language-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job.

      • SUBMITTED - The job has been received and is queued for processing.

      • IN_PROGRESS - Amazon Comprehend is processing the job.

      • COMPLETED - The job was successfully completed and the output is available.

      • FAILED - The job did not complete. To get details, use the operation.

StartEntitiesDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous entity detection job for a collection of documents. Use the operation to track the status of a job.

This API can be used for either standard entity detection or custom entity recognition. In order to be used for custom entity recognition, the optional EntityRecognizerArn must be used in order to provide access to the recognizer being used to detect the custom entity.

See also: AWS API Documentation

Request Syntax

client.start_entities_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    EntityRecognizerArn='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    ClientRequestToken='string',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data. For more information, see https://docs.aws.amazon.com/comprehend/latest/dg/access-control-managing-permissions.html#auth-role-permissions.

type JobName:

string

param JobName:

The identifier of the job.

type EntityRecognizerArn:

string

param EntityRecognizerArn:

The Amazon Resource Name (ARN) that identifies the specific entity recognizer to be used by the StartEntitiesDetectionJob. This ARN is optional and is only used for a custom entity recognition job.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

The language of the input documents. All documents must be in the same language. You can specify any of the languages supported by Amazon Comprehend. If custom entities recognition is used, this parameter is ignored and the language used for training the model is used instead.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your entity detection job. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Tags:

list

param Tags:

Tags to be associated with the entities detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job. To get the status of job, use this identifier with the operation.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the entities detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:entities-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job.

      • SUBMITTED - The job has been received and is queued for processing.

      • IN_PROGRESS - Amazon Comprehend is processing the job.

      • COMPLETED - The job was successfully completed and the output is available.

      • FAILED - The job did not complete. To get details, use the operation.

      • STOP_REQUESTED - Amazon Comprehend has received a stop request for the job and is processing the request.

      • STOPPED - The job was successfully stopped without completing.

StartEventsDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous event detection job for a collection of documents.

See also: AWS API Documentation

Request Syntax

client.start_events_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    ClientRequestToken='string',
    TargetEventTypes=[
        'string',
    ],
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

type JobName:

string

param JobName:

The identifier of the events detection job.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

The language code of the input documents.

type ClientRequestToken:

string

param ClientRequestToken:

An unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type TargetEventTypes:

list

param TargetEventTypes:

[REQUIRED]

The types of events to detect in the input documents.

  • (string) --

type Tags:

list

param Tags:

Tags to be associated with the events detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      An unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the events detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:events-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:events-detection-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the events detection job.

StartKeyPhrasesDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous key phrase detection job for a collection of documents. Use the operation to track the status of a job.

See also: AWS API Documentation

Request Syntax

client.start_key_phrases_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    ClientRequestToken='string',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data. For more information, see https://docs.aws.amazon.com/comprehend/latest/dg/access-control-managing-permissions.html#auth-role-permissions.

type JobName:

string

param JobName:

The identifier of the job.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. All documents must be in the same language.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your key phrases detection job. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Tags:

list

param Tags:

Tags to be associated with the key phrases detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job. To get the status of a job, use this identifier with the operation.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the key phrase detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:key-phrases-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job.

      • SUBMITTED - The job has been received and is queued for processing.

      • IN_PROGRESS - Amazon Comprehend is processing the job.

      • COMPLETED - The job was successfully completed and the output is available.

      • FAILED - The job did not complete. To get details, use the operation.

StartPiiEntitiesDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous PII entity detection job for a collection of documents.

See also: AWS API Documentation

Request Syntax

client.start_pii_entities_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    Mode='ONLY_REDACTION'|'ONLY_OFFSETS',
    RedactionConfig={
        'PiiEntityTypes': [
            'BANK_ACCOUNT_NUMBER'|'BANK_ROUTING'|'CREDIT_DEBIT_NUMBER'|'CREDIT_DEBIT_CVV'|'CREDIT_DEBIT_EXPIRY'|'PIN'|'EMAIL'|'ADDRESS'|'NAME'|'PHONE'|'SSN'|'DATE_TIME'|'PASSPORT_NUMBER'|'DRIVER_ID'|'URL'|'AGE'|'USERNAME'|'PASSWORD'|'AWS_ACCESS_KEY'|'AWS_SECRET_KEY'|'IP_ADDRESS'|'MAC_ADDRESS'|'ALL',
        ],
        'MaskMode': 'MASK'|'REPLACE_WITH_PII_ENTITY_TYPE',
        'MaskCharacter': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    ClientRequestToken='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

The input properties for a PII entities detection job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Provides configuration parameters for the output of PII entity detection jobs.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type Mode:

string

param Mode:

[REQUIRED]

Specifies whether the output provides the locations (offsets) of PII entities or a file in which PII entities are redacted.

type RedactionConfig:

dict

param RedactionConfig:

Provides configuration parameters for PII entity redaction.

This parameter is required if you set the Mode parameter to ONLY_REDACTION. In that case, you must provide a RedactionConfig definition that includes the PiiEntityTypes parameter.

  • PiiEntityTypes (list) --

    An array of the types of PII entities that Amazon Comprehend detects in the input text for your request.

    • (string) --

  • MaskMode (string) --

    Specifies whether the PII entity is redacted with the mask character or the entity type.

  • MaskCharacter (string) --

    A character that replaces each character in the redacted PII entity.

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data.

type JobName:

string

param JobName:

The identifier of the job.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

The language of the input documents.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type Tags:

list

param Tags:

Tags to be associated with the PII entities detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the PII entity detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:pii-entities-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job.

StartSentimentDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous sentiment detection job for a collection of documents. use the operation to track the status of a job.

See also: AWS API Documentation

Request Syntax

client.start_sentiment_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW',
    ClientRequestToken='string',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files.

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data. For more information, see https://docs.aws.amazon.com/comprehend/latest/dg/access-control-managing-permissions.html#auth-role-permissions.

type JobName:

string

param JobName:

The identifier of the job.

type LanguageCode:

string

param LanguageCode:

[REQUIRED]

The language of the input documents. You can specify any of the primary languages supported by Amazon Comprehend. All documents must be in the same language.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you don't set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your sentiment detection job. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Tags:

list

param Tags:

Tags to be associated with the sentiment detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job. To get the status of a job, use this identifier with the operation.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the sentiment detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:sentiment-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job.

      • SUBMITTED - The job has been received and is queued for processing.

      • IN_PROGRESS - Amazon Comprehend is processing the job.

      • COMPLETED - The job was successfully completed and the output is available.

      • FAILED - The job did not complete. To get details, use the operation.

StartTopicsDetectionJob (updated) Link ¶
Changes (request)
{'InputDataConfig': {'DocumentReaderConfig': {'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT '
                                                                    '| '
                                                                    'TEXTRACT_ANALYZE_DOCUMENT',
                                              'DocumentReadMode': 'SERVICE_DEFAULT '
                                                                  '| '
                                                                  'FORCE_DOCUMENT_READ_ACTION',
                                              'FeatureTypes': ['TABLES | '
                                                               'FORMS']}}}

Starts an asynchronous topic detection job. Use the DescribeTopicDetectionJob operation to track the status of a job.

See also: AWS API Documentation

Request Syntax

client.start_topics_detection_job(
    InputDataConfig={
        'S3Uri': 'string',
        'InputFormat': 'ONE_DOC_PER_FILE'|'ONE_DOC_PER_LINE',
        'DocumentReaderConfig': {
            'DocumentReadAction': 'TEXTRACT_DETECT_DOCUMENT_TEXT'|'TEXTRACT_ANALYZE_DOCUMENT',
            'DocumentReadMode': 'SERVICE_DEFAULT'|'FORCE_DOCUMENT_READ_ACTION',
            'FeatureTypes': [
                'TABLES'|'FORMS',
            ]
        }
    },
    OutputDataConfig={
        'S3Uri': 'string',
        'KmsKeyId': 'string'
    },
    DataAccessRoleArn='string',
    JobName='string',
    NumberOfTopics=123,
    ClientRequestToken='string',
    VolumeKmsKeyId='string',
    VpcConfig={
        'SecurityGroupIds': [
            'string',
        ],
        'Subnets': [
            'string',
        ]
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type InputDataConfig:

dict

param InputDataConfig:

[REQUIRED]

Specifies the format and location of the input data for the job.

  • S3Uri (string) -- [REQUIRED]

    The Amazon S3 URI for the input data. The URI must be in same region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of data files.

    For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input.

  • InputFormat (string) --

    Specifies how the text in an input file should be processed:

    • ONE_DOC_PER_FILE - Each file is considered a separate document. Use this option when you are processing large documents, such as newspaper articles or scientific papers.

    • ONE_DOC_PER_LINE - Each line in a file is considered a separate document. Use this option when you are processing many short documents, such as text messages.

  • DocumentReaderConfig (dict) --

    The document reader config field applies only for InputDataConfig of StartEntitiesDetectionJob.

    Use DocumentReaderConfig to provide specifications about how you want your inference documents read. Currently it applies for PDF documents in StartEntitiesDetectionJob custom inference.

    • DocumentReadAction (string) -- [REQUIRED]

      This enum field will start with two values which will apply to PDFs:

      • TEXTRACT_DETECT_DOCUMENT_TEXT - The service calls DetectDocumentText for PDF documents per page.

      • TEXTRACT_ANALYZE_DOCUMENT - The service calls AnalyzeDocument for PDF documents per page.

    • DocumentReadMode (string) --

      This enum field provides two values:

      • SERVICE_DEFAULT - use service defaults for Document reading. For Digital PDF it would mean using an internal parser instead of Textract APIs

      • FORCE_DOCUMENT_READ_ACTION - Always use specified action for DocumentReadAction, including Digital PDF.

    • FeatureTypes (list) --

      Specifies how the text in an input file should be processed:

      • (string) --

        A list of the types of analyses to perform. This field specifies what feature types need to be extracted from the document where entity recognition is expected.

        • TABLES - Add TABLES to the list to return information about the tables that are detected in the input document.

        • FORMS - Add FORMS to return detected form data.

type OutputDataConfig:

dict

param OutputDataConfig:

[REQUIRED]

Specifies where to send the output files. The output is a compressed archive with two files, topic-terms.csv that lists the terms associated with each topic, and doc-topics.csv that lists the documents associated with each topic

  • S3Uri (string) -- [REQUIRED]

    When you use the OutputDataConfig object with asynchronous operations, you specify the Amazon S3 location where you want to write the output data. The URI must be in the same region as the API endpoint that you are calling. The location is used as the prefix for the actual location of the output file.

    When the topic detection job is finished, the service creates an output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the ouput of the operation.

  • KmsKeyId (string) --

    ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:

    • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

    • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

    • KMS Key Alias: "alias/ExampleAlias"

    • ARN of a KMS Key Alias: "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

type DataAccessRoleArn:

string

param DataAccessRoleArn:

[REQUIRED]

The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that grants Amazon Comprehend read access to your input data. For more information, see https://docs.aws.amazon.com/comprehend/latest/dg/access-control-managing-permissions.html#auth-role-permissions.

type JobName:

string

param JobName:

The identifier of the job.

type NumberOfTopics:

integer

param NumberOfTopics:

The number of topics to detect.

type ClientRequestToken:

string

param ClientRequestToken:

A unique identifier for the request. If you do not set the client request token, Amazon Comprehend generates one.

This field is autopopulated if not provided.

type VolumeKmsKeyId:

string

param VolumeKmsKeyId:

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

type VpcConfig:

dict

param VpcConfig:

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your topic detection job. For more information, see Amazon VPC.

  • SecurityGroupIds (list) -- [REQUIRED]

    The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by "sg-", for instance: "sg-03b388029b0a285ea". For more information, see Security Groups for your VPC.

    • (string) --

  • Subnets (list) -- [REQUIRED]

    The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by "subnet-", for instance: "subnet-04ccf456919e69055". For more information, see VPCs and Subnets.

    • (string) --

type Tags:

list

param Tags:

Tags to be associated with the topics detection job. A tag is a key-value pair that adds metadata to a resource used by Amazon Comprehend. For example, a tag with "Sales" as the key might be added to a resource to indicate its use by the sales department.

  • (dict) --

    A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

    • Key (string) -- [REQUIRED]

      The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

    • Value (string) --

      The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

rtype:

dict

returns:

Response Syntax

{
    'JobId': 'string',
    'JobArn': 'string',
    'JobStatus': 'SUBMITTED'|'IN_PROGRESS'|'COMPLETED'|'FAILED'|'STOP_REQUESTED'|'STOPPED'
}

Response Structure

  • (dict) --

    • JobId (string) --

      The identifier generated for the job. To get the status of the job, use this identifier with the DescribeTopicDetectionJob operation.

    • JobArn (string) --

      The Amazon Resource Name (ARN) of the topics detection job. It is a unique, fully qualified identifier for the job. It includes the AWS account, Region, and the job ID. The format of the ARN is as follows:

      arn:<partition>:comprehend:<region>:<account-id>:topics-detection-job/<job-id>

      The following is an example job ARN:

      arn:aws:comprehend:us-west-2:111122223333:document-classification-job/1234abcd12ab34cd56ef1234567890ab

    • JobStatus (string) --

      The status of the job:

      • SUBMITTED - The job has been received and is queued for processing.

      • IN_PROGRESS - Amazon Comprehend is processing the job.

      • COMPLETED - The job was successfully completed and the output is available.

      • FAILED - The job did not complete. To get details, use the DescribeTopicDetectionJob operation.